Pursuing Better Decision Boundaries for Long-Tailed Object Detection via Category Information Amount
- URL: http://arxiv.org/abs/2502.03852v1
- Date: Thu, 06 Feb 2025 08:08:18 GMT
- Title: Pursuing Better Decision Boundaries for Long-Tailed Object Detection via Category Information Amount
- Authors: Yanbiao Ma, Wei Dai, Jiayi Chen,
- Abstract summary: In object detection, the instance count is typically used to define whether a dataset exhibits a long-tail distribution.
This assumption has led to extensive research on category bias in datasets with imbalanced instance counts.
We propose Information Amount-Guided Angular Margin (IGAM) Loss to dynamically adjust the decision space of each category based on its information amount.
- Score: 6.745949254672713
- License:
- Abstract: In object detection, the instance count is typically used to define whether a dataset exhibits a long-tail distribution, implicitly assuming that models will underperform on categories with fewer instances. This assumption has led to extensive research on category bias in datasets with imbalanced instance counts. However, models still exhibit category bias even in datasets where instance counts are relatively balanced, clearly indicating that instance count alone cannot explain this phenomenon. In this work, we first introduce the concept and measurement of category information amount. We observe a significant negative correlation between category information amount and accuracy, suggesting that category information amount more accurately reflects the learning difficulty of a category. Based on this observation, we propose Information Amount-Guided Angular Margin (IGAM) Loss. The core idea of IGAM is to dynamically adjust the decision space of each category based on its information amount, thereby reducing category bias in long-tail datasets. IGAM Loss not only performs well on long-tailed benchmark datasets such as LVIS v1.0 and COCO-LT but also shows significant improvement for underrepresented categories in the non-long-tailed dataset Pascal VOC. Comprehensive experiments demonstrate the potential of category information amount as a tool and the generality of our proposed method.
Related papers
- Unleashing the Potential of Model Bias for Generalized Category Discovery [9.552403124453614]
Generalized Category Discovery is a significant task that aims to identify both known and undefined novel categories.
The primary challenges stem from model bias induced by pre-training on only known categories and the lack of precise supervision for novel ones.
We propose a novel framework named Self-Debiasing (SDC) to address these challenges.
arXiv Detail & Related papers (2024-12-17T03:05:27Z) - Balanced Classification: A Unified Framework for Long-Tailed Object
Detection [74.94216414011326]
Conventional detectors suffer from performance degradation when dealing with long-tailed data due to a classification bias towards the majority head categories.
We introduce a unified framework called BAlanced CLassification (BACL), which enables adaptive rectification of inequalities caused by disparities in category distribution.
BACL consistently achieves performance improvements across various datasets with different backbones and architectures.
arXiv Detail & Related papers (2023-08-04T09:11:07Z) - Dynamic Conceptional Contrastive Learning for Generalized Category
Discovery [76.82327473338734]
Generalized category discovery (GCD) aims to automatically cluster partially labeled data.
Unlabeled data contain instances that are not only from known categories of the labeled data but also from novel categories.
One effective way for GCD is applying self-supervised learning to learn discriminate representation for unlabeled data.
We propose a Dynamic Conceptional Contrastive Learning framework, which can effectively improve clustering accuracy.
arXiv Detail & Related papers (2023-03-30T14:04:39Z) - Mutual Exclusive Modulator for Long-Tailed Recognition [12.706961256329572]
Long-tailed recognition is the task of learning high-performance classifiers given extremely imbalanced training samples between categories.
We introduce a mutual exclusive modulator which can estimate the probability of an image belonging to each group.
Our method achieves competitive performance compared to the state-of-the-art benchmarks.
arXiv Detail & Related papers (2023-02-19T07:31:49Z) - DropLoss for Long-Tail Instance Segmentation [56.162929199998075]
We develop DropLoss, a novel adaptive loss to compensate for the imbalance between rare and frequent categories.
We show state-of-the-art mAP across rare, common, and frequent categories on the LVIS dataset.
arXiv Detail & Related papers (2021-04-13T17:59:22Z) - Closing the Generalization Gap in One-Shot Object Detection [92.82028853413516]
We show that the key to strong few-shot detection models may not lie in sophisticated metric learning approaches, but instead in scaling the number of categories.
Future data annotation efforts should therefore focus on wider datasets and annotate a larger number of categories.
arXiv Detail & Related papers (2020-11-09T09:31:17Z) - Seesaw Loss for Long-Tailed Instance Segmentation [131.86306953253816]
We propose Seesaw Loss to dynamically re-balance gradients of positive and negative samples for each category.
The mitigation factor reduces punishments to tail categories w.r.t. the ratio of cumulative training instances between different categories.
The compensation factor increases the penalty of misclassified instances to avoid false positives of tail categories.
arXiv Detail & Related papers (2020-08-23T12:44:45Z) - The Devil is in Classification: A Simple Framework for Long-tail Object
Detection and Instance Segmentation [93.17367076148348]
We investigate performance drop of the state-of-the-art two-stage instance segmentation model Mask R-CNN on the recent long-tail LVIS dataset.
We unveil that a major cause is the inaccurate classification of object proposals.
We propose a simple calibration framework to more effectively alleviate classification head bias with a bi-level class balanced sampling approach.
arXiv Detail & Related papers (2020-07-23T12:49:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.