Generalize Drug Response Prediction by Latent Independent Projection for Asymmetric Constrained Domain Generalization
- URL: http://arxiv.org/abs/2502.04034v1
- Date: Thu, 06 Feb 2025 12:53:45 GMT
- Title: Generalize Drug Response Prediction by Latent Independent Projection for Asymmetric Constrained Domain Generalization
- Authors: Ran Song, Yinpu Bai, Hui Liu,
- Abstract summary: We propose a novel domain generalization framework, termed panCancerDR, to address this challenge.
We conceptualize each cancer type as a distinct source domain, with its cell lines serving as domain-specific samples.
Our empirical experiments demonstrate that panCancerDR effectively learns task-relevant features from diverse source domains.
- Score: 11.649397977546435
- License:
- Abstract: The accurate prediction of drug responses remains a formidable challenge, particularly at the single-cell level and in clinical treatment contexts. Some studies employ transfer learning techniques to predict drug responses in individual cells and patients, but they require access to target-domain data during training, which is often unavailable or only obtainable in future. In this study, we propose a novel domain generalization framework, termed panCancerDR, to address this challenge. We conceptualize each cancer type as a distinct source domain, with its cell lines serving as domain-specific samples. Our primary objective is to extract domain-invariant features from the expression profiles of cell lines across diverse cancer types, thereby generalize the predictive capacity to out-of-distribution samples. To enhance robustness, we introduce a latent independence projection (LIP) module that encourages the encoder to extract informative yet non-redundant features. Also, we propose an asymmetric adaptive clustering constraint, which clusters drug-sensitive samples into a compact group while drives resistant samples dispersed across separate clusters in the latent space. Our empirical experiments demonstrate that panCancerDR effectively learns task-relevant features from diverse source domains, and achieves accurate predictions of drug response for unseen cancer type during training. Furthermore, when evaluated on single-cell and patient-level prediction tasks, our model-trained solely on in vitro cell line data without access to target-domain information-consistently outperforms and matched current state-of-the-art methods. These findings highlights the potential of our method for real-world clinical applications.
Related papers
- Efficient Fine-Tuning of Single-Cell Foundation Models Enables Zero-Shot Molecular Perturbation Prediction [0.6501158610800594]
In this study, we leverage single-cell foundation models (FMs) pre-trained on tens of millions of single cells.
We introduce a drug-conditional adapter that allows efficient fine-tuning by training less than 1% of the original foundation model.
arXiv Detail & Related papers (2024-12-18T03:42:20Z) - RaffeSDG: Random Frequency Filtering enabled Single-source Domain Generalization for Medical Image Segmentation [41.50001361938865]
Deep learning models often encounter challenges in making accurate inferences when there are domain shifts between the source and target data.
We propose a Random frequency filtering enabled Single-source Domain Generalization algorithm (RaffeSDG)
RaffeSDG promises robust out-of-domain inference with segmentation models trained on a single-source domain.
arXiv Detail & Related papers (2024-05-02T12:13:00Z) - Towards generalization of drug response prediction to single cells and patients utilizing importance-aware multi-source domain transfer learning [6.810949980810495]
scAdaDrug is a novel multi-source domain adaptation model powered by adaptive importance-aware representation learning.
Our model achieved state-of-the-art performance in predicting drug response on multiple independent datasets.
arXiv Detail & Related papers (2024-03-08T12:31:03Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
We present a geometry-constrained probabilistic modeling treatment to resolve the identified issues.
We incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space.
A spectral graph-theoretic method is devised to estimate the number of potential novel classes.
arXiv Detail & Related papers (2024-03-02T00:56:05Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
We develop an attention-enhanced graph autoencoder, which is designed to efficiently capture the topological features between cells.
During the clustering process, we integrated both sets of information and reconstructed the features of both cells and genes to generate a discriminative representation.
This research offers enhanced insights into the characteristics and distribution of cells, thereby laying the groundwork for early diagnosis and treatment of diseases.
arXiv Detail & Related papers (2023-11-28T09:14:55Z) - A Privacy-Preserving Walk in the Latent Space of Generative Models for
Medical Applications [11.39717289910264]
Generative Adversarial Networks (GANs) have demonstrated their ability to generate synthetic samples that match a target distribution.
GANs tend to embed near-duplicates of real samples in the latent space.
We propose a latent space navigation strategy able to generate diverse synthetic samples that may support effective training of deep models.
arXiv Detail & Related papers (2023-07-06T13:35:48Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
We introduce a single diffusion model-based approach that produces multiple plausible outputs by learning a distribution over group insights.
Our proposed model generates a distribution of segmentation masks by leveraging the inherent sampling process of diffusion.
Comprehensive results show that our proposed approach outperforms existing state-of-the-art ambiguous segmentation networks.
arXiv Detail & Related papers (2023-04-10T17:58:22Z) - Learning Causal Representations of Single Cells via Sparse Mechanism
Shift Modeling [3.2435888122704037]
We propose a deep generative model of single-cell gene expression data for which each perturbation is treated as an intervention targeting an unknown, but sparse, subset of latent variables.
We benchmark these methods on simulated single-cell data to evaluate their performance at latent units recovery, causal target identification and out-of-domain generalization.
arXiv Detail & Related papers (2022-11-07T15:47:40Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.