GUIWatcher: Automatically Detecting GUI Lags by Analyzing Mobile Application Screencasts
- URL: http://arxiv.org/abs/2502.04202v1
- Date: Thu, 06 Feb 2025 16:43:51 GMT
- Title: GUIWatcher: Automatically Detecting GUI Lags by Analyzing Mobile Application Screencasts
- Authors: Wei Liu, Feng Lin, Linqiang Guo, Tse-Hsun Chen, Ahmed E. Hassan,
- Abstract summary: The Graphical User Interface (GUI) plays a central role in mobile applications, directly affecting usability and user satisfaction.
Poor GUI performance, such as lag or unresponsiveness, can lead to negative user experience and decreased mobile application (app) ratings.
We present GUIWatcher, a framework designed to detect GUI lags by analyzing screencasts recorded during mobile app testing.
- Score: 9.997570370503617
- License:
- Abstract: The Graphical User Interface (GUI) plays a central role in mobile applications, directly affecting usability and user satisfaction. Poor GUI performance, such as lag or unresponsiveness, can lead to negative user experience and decreased mobile application (app) ratings. In this paper, we present GUIWatcher, a framework designed to detect GUI lags by analyzing screencasts recorded during mobile app testing. GUIWatcher uses computer vision techniques to identify three types of lag-inducing frames (i.e., janky frames, long loading frames, and frozen frames) and prioritizes the most severe ones that significantly impact user experience. Our approach was evaluated using real-world mobile application tests, achieving high accuracy in detecting GUI lags in screencasts, with an average precision of 0.91 and recall of 0.96. The comprehensive bug reports generated from the lags detected by GUIWatcher help developers focus on the more critical issues and debug them efficiently. Additionally, GUIWatcher has been deployed in a real-world production environment, continuously monitoring app performance and successfully identifying critical GUI performance issues. By offering a practical solution for identifying and addressing GUI lags, GUIWatcher contributes to enhancing user satisfaction and the overall quality of mobile apps.
Related papers
- WorldGUI: Dynamic Testing for Comprehensive Desktop GUI Automation [20.11855701656702]
We present WorldGUI, a novel GUI benchmark that designs GUI tasks with various initial states to simulate real computer-user interactions.
We also propose GUI-Thinker, a holistic framework, that effectively manages the unpredictability and complexity of GUI interactions.
arXiv Detail & Related papers (2025-02-12T01:06:10Z) - GUI-Bee: Align GUI Action Grounding to Novel Environments via Autonomous Exploration [56.58744345634623]
We propose GUI-Bee, an MLLM-based autonomous agent, to collect high-quality, environment-specific data through exploration.
We also introduce NovelScreenSpot, a benchmark for testing how well the data can help align GUI action grounding models to novel environments.
arXiv Detail & Related papers (2025-01-23T18:16:21Z) - UI-TARS: Pioneering Automated GUI Interaction with Native Agents [58.18100825673032]
This paper introduces UI-TARS, a native GUI agent model that solely perceives the screenshots as input and performs human-like interactions.
In the OSWorld benchmark, UI-TARS achieves scores of 24.6 with 50 steps and 22.7 with 15 steps, outperforming Claude (22.0 and 14.9 respectively)
arXiv Detail & Related papers (2025-01-21T17:48:10Z) - Zero-Shot Prompting Approaches for LLM-based Graphical User Interface Generation [53.1000575179389]
We propose a Retrieval-Augmented GUI Generation (RAGG) approach, integrated with an LLM-based GUI retrieval re-ranking and filtering mechanism.
In addition, we adapt Prompt Decomposition (PDGG) and Self-Critique (SCGG) for GUI generation.
Our evaluation, which encompasses over 3,000 GUI annotations from over 100 crowd-workers with UI/UX experience, shows that SCGG, in contrast to PDGG and RAGG, can lead to more effective GUI generation.
arXiv Detail & Related papers (2024-12-15T22:17:30Z) - Falcon-UI: Understanding GUI Before Following User Instructions [57.67308498231232]
We introduce an instruction-free GUI navigation dataset, termed Insight-UI dataset, to enhance model comprehension of GUI environments.
Insight-UI dataset is automatically generated from the Common Crawl corpus, simulating various platforms.
We develop the GUI agent model Falcon-UI, which is initially pretrained on Insight-UI dataset and subsequently fine-tuned on Android and Web GUI datasets.
arXiv Detail & Related papers (2024-12-12T15:29:36Z) - GUICourse: From General Vision Language Models to Versatile GUI Agents [75.5150601913659]
We contribute GUICourse, a suite of datasets to train visual-based GUI agents.
First, we introduce the GUIEnv dataset to strengthen the OCR and grounding capabilities of VLMs.
Then, we introduce the GUIAct and GUIChat datasets to enrich their knowledge of GUI components and interactions.
arXiv Detail & Related papers (2024-06-17T08:30:55Z) - GUI-WORLD: A Dataset for GUI-oriented Multimodal LLM-based Agents [73.9254861755974]
This paper introduces a new dataset, called GUI-World, which features meticulously crafted Human-MLLM annotations.
We evaluate the capabilities of current state-of-the-art MLLMs, including ImageLLMs and VideoLLMs, in understanding various types of GUI content.
arXiv Detail & Related papers (2024-06-16T06:56:53Z) - SeeClick: Harnessing GUI Grounding for Advanced Visual GUI Agents [17.43878828389188]
We propose a novel visual Graphical User Interface (GUI) agent, SeeClick, which only relies on screenshots for task automation.
To tackle this challenge, we propose to enhance SeeClick with GUI grounding pre-training and devise a method to automate the curation of GUI grounding data.
We have also created ScreenSpot, the first realistic GUI grounding benchmark that encompasses mobile, desktop, and web environments.
arXiv Detail & Related papers (2024-01-17T08:10:35Z) - Vision-Based Mobile App GUI Testing: A Survey [29.042723121518765]
Vision-based mobile app GUI testing approaches emerged with the development of computer vision technologies.
We provide a comprehensive investigation of the state-of-the-art techniques on 271 papers, among which 92 are vision-based studies.
arXiv Detail & Related papers (2023-10-20T14:04:04Z) - NiCro: Purely Vision-based, Non-intrusive Cross-Device and
Cross-Platform GUI Testing [19.462053492572142]
We propose a non-intrusive cross-device and cross-platform system NiCro.
NiCro uses the state-of-the-art GUI widget detector to detect widgets from GUI images and then analyses a set of comprehensive information to match the widgets across diverse devices.
At the system level, NiCro can interact with a virtual device farm and a robotic arm system to perform cross-device, cross-platform testing non-intrusively.
arXiv Detail & Related papers (2023-05-24T01:19:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.