NLP-Based .NET CLR Event Logs Analyzer
- URL: http://arxiv.org/abs/2502.04219v1
- Date: Thu, 06 Feb 2025 17:01:38 GMT
- Title: NLP-Based .NET CLR Event Logs Analyzer
- Authors: Maxim Stavtsev, Sergey Shershakov,
- Abstract summary: We present a tool for analyzing.NET CLR event logs based on a novel method inspired by Natural Language Processing (NLP) approach.
We utilize a BERT-based architecture with an enhanced tokenization process customized to event logs.
Our experiments demonstrate the efficacy of our approach in compressing event sequences, detecting recurring patterns, and identifying anomalies.
- Score: 0.0
- License:
- Abstract: In this paper, we present a tool for analyzing .NET CLR event logs based on a novel method inspired by Natural Language Processing (NLP) approach. Our research addresses the growing need for effective monitoring and optimization of software systems through detailed event log analysis. We utilize a BERT-based architecture with an enhanced tokenization process customized to event logs. The tool, developed using Python, its libraries, and an SQLite database, allows both conducting experiments for academic purposes and efficiently solving industry-emerging tasks. Our experiments demonstrate the efficacy of our approach in compressing event sequences, detecting recurring patterns, and identifying anomalies. The trained model shows promising results, with a high accuracy rate in anomaly detection, which demonstrates the potential of NLP methods to improve the reliability and stability of software systems.
Related papers
- RAPID: Training-free Retrieval-based Log Anomaly Detection with PLM
considering Token-level information [7.861095039299132]
The need for log anomaly detection is growing, especially in real-world applications.
Traditional deep learning-based anomaly detection models require dataset-specific training, leading to corresponding delays.
We introduce RAPID, a model that capitalizes on the inherent features of log data to enable anomaly detection without training delays.
arXiv Detail & Related papers (2023-11-09T06:11:44Z) - Log-based Anomaly Detection based on EVT Theory with feedback [31.949892354842525]
We present an accurate, lightweight, and adaptive log-based anomaly detection framework, referred to as SeaLog.
Our method introduces a Trie-based Detection Agent (TDA) that employs a lightweight, dynamically-growing trie structure for real-time anomaly detection.
To enhance TDA's accuracy in response to evolving log data, we enable it to receive feedback from experts.
arXiv Detail & Related papers (2023-06-08T08:34:58Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
We propose PULL, an iterative log analysis method for reactive anomaly detection based on estimated failure time windows.
Our evaluation shows that PULL consistently outperforms ten benchmark baselines across three different datasets.
arXiv Detail & Related papers (2023-01-25T16:34:43Z) - Leveraging Log Instructions in Log-based Anomaly Detection [0.5949779668853554]
We propose a method for reliable and practical anomaly detection from system logs.
It overcomes the common disadvantage of related works by building an anomaly detection model with log instructions from the source code of 1000+ GitHub projects.
The proposed method, named ADLILog, combines the log instructions and the data from the system of interest (target system) to learn a deep neural network model.
arXiv Detail & Related papers (2022-07-07T10:22:10Z) - SKTR: Trace Recovery from Stochastically Known Logs [7.882975068446842]
Developments in machine learning together with the increasing usage of sensor data challenge the reliance on deterministic logs.
In this work we formulate the task of generating a deterministic log fromally known logs that is as faithful to reality as possible.
An effective trace recovery algorithm would be a powerful aid for maintaining credible process mining tools for uncertain settings.
arXiv Detail & Related papers (2022-06-25T15:29:20Z) - LAnoBERT: System Log Anomaly Detection based on BERT Masked Language
Model [12.00171674362062]
The aim of system log anomaly detection is to promptly identify anomalies while minimizing human intervention.
Previous studies performed anomaly detection through algorithms after converting various forms of log data into a standardized template.
In this study, we propose LAnoBERT, exhibiting excellent natural language processing performance.
arXiv Detail & Related papers (2021-11-18T07:46:35Z) - LogLAB: Attention-Based Labeling of Log Data Anomalies via Weak
Supervision [63.08516384181491]
We present LogLAB, a novel modeling approach for automated labeling of log messages without requiring manual work by experts.
Our method relies on estimated failure time windows provided by monitoring systems to produce precise labeled datasets in retrospect.
Our evaluation shows that LogLAB consistently outperforms nine benchmark approaches across three different datasets and maintains an F1-score of more than 0.98 even at large failure time windows.
arXiv Detail & Related papers (2021-11-02T15:16:08Z) - Online Learning Probabilistic Event Calculus Theories in Answer Set
Programming [70.06301658267125]
Event Recognition (CER) systems detect occurrences in streaming time-stamped datasets using predefined event patterns.
We present a system based on Answer Set Programming (ASP), capable of probabilistic reasoning with complex event patterns in the form of rules weighted in the Event Calculus.
Our results demonstrate the superiority of our novel approach, both terms efficiency and predictive.
arXiv Detail & Related papers (2021-03-31T23:16:29Z) - Bandit Data-Driven Optimization [62.01362535014316]
There are four major pain points that a machine learning pipeline must overcome in order to be useful in settings.
We introduce bandit data-driven optimization, the first iterative prediction-prescription framework to address these pain points.
We propose PROOF, a novel algorithm for this framework and formally prove that it has no-regret.
arXiv Detail & Related papers (2020-08-26T17:50:49Z) - Process Discovery for Structured Program Synthesis [70.29027202357385]
A core task in process mining is process discovery which aims to learn an accurate process model from event log data.
In this paper, we propose to use (block-) structured programs directly as target process models.
We develop a novel bottom-up agglomerative approach to the discovery of such structured program process models.
arXiv Detail & Related papers (2020-08-13T10:33:10Z) - Self-Supervised Log Parsing [59.04636530383049]
Large-scale software systems generate massive volumes of semi-structured log records.
Existing approaches rely on log-specifics or manual rule extraction.
We propose NuLog that utilizes a self-supervised learning model and formulates the parsing task as masked language modeling.
arXiv Detail & Related papers (2020-03-17T19:25:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.