Targeted Learning for Data Fairness
- URL: http://arxiv.org/abs/2502.04309v1
- Date: Thu, 06 Feb 2025 18:51:28 GMT
- Title: Targeted Learning for Data Fairness
- Authors: Alexander Asemota, Giles Hooker,
- Abstract summary: We expand fairness inference by evaluating fairness in the data generating process itself.
We derive estimators demographic parity, equal opportunity, and conditional mutual information.
To validate our approach, we perform several simulations and apply our estimators to real data.
- Score: 52.59573714151884
- License:
- Abstract: Data and algorithms have the potential to produce and perpetuate discrimination and disparate treatment. As such, significant effort has been invested in developing approaches to defining, detecting, and eliminating unfair outcomes in algorithms. In this paper, we focus on performing statistical inference for fairness. Prior work in fairness inference has largely focused on inferring the fairness properties of a given predictive algorithm. Here, we expand fairness inference by evaluating fairness in the data generating process itself, referred to here as data fairness. We perform inference on data fairness using targeted learning, a flexible framework for nonparametric inference. We derive estimators demographic parity, equal opportunity, and conditional mutual information. Additionally, we find that our estimators for probabilistic metrics exploit double robustness. To validate our approach, we perform several simulations and apply our estimators to real data.
Related papers
- Achievable Fairness on Your Data With Utility Guarantees [16.78730663293352]
In machine learning fairness, training models that minimize disparity across different sensitive groups often leads to diminished accuracy.
We present a computationally efficient approach to approximate the fairness-accuracy trade-off curve tailored to individual datasets.
We introduce a novel methodology for quantifying uncertainty in our estimates, thereby providing practitioners with a robust framework for auditing model fairness.
arXiv Detail & Related papers (2024-02-27T00:59:32Z) - Fairness Without Harm: An Influence-Guided Active Sampling Approach [32.173195437797766]
We aim to train models that mitigate group fairness disparity without causing harm to model accuracy.
The current data acquisition methods, such as fair active learning approaches, typically require annotating sensitive attributes.
We propose a tractable active data sampling algorithm that does not rely on training group annotations.
arXiv Detail & Related papers (2024-02-20T07:57:38Z) - Fairness in Matching under Uncertainty [78.39459690570531]
algorithmic two-sided marketplaces have drawn attention to the issue of fairness in such settings.
We axiomatize a notion of individual fairness in the two-sided marketplace setting which respects the uncertainty in the merits.
We design a linear programming framework to find fair utility-maximizing distributions over allocations.
arXiv Detail & Related papers (2023-02-08T00:30:32Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
We propose D-BIAS, a visual interactive tool that embodies human-in-the-loop AI approach for auditing and mitigating social biases.
A user can detect the presence of bias against a group by identifying unfair causal relationships in the causal network.
For each interaction, say weakening/deleting a biased causal edge, the system uses a novel method to simulate a new (debiased) dataset.
arXiv Detail & Related papers (2022-08-10T03:41:48Z) - On Learning and Testing of Counterfactual Fairness through Data
Preprocessing [27.674565351048077]
Machine learning has become more important in real-life decision-making but people are concerned about the ethical problems it may bring when used improperly.
Recent work brings the discussion of machine learning fairness into the causal framework and elaborates on the concept of Counterfactual Fairness.
We develop the Fair Learning through dAta Preprocessing (FLAP) algorithm to learn counterfactually fair decisions from biased training data.
arXiv Detail & Related papers (2022-02-25T00:21:46Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
dataset bias is one of the prevailing causes of unfairness in machine learning.
We study whether models trained with uncertainty-based ALs are fairer in their decisions with respect to a protected class.
We also explore the interaction of algorithmic fairness methods such as gradient reversal (GRAD) and BALD.
arXiv Detail & Related papers (2021-04-14T14:20:22Z) - Fair Densities via Boosting the Sufficient Statistics of Exponential
Families [72.34223801798422]
We introduce a boosting algorithm to pre-process data for fairness.
Our approach shifts towards better data fitting while still ensuring a minimal fairness guarantee.
Empirical results are present to display the quality of result on real-world data.
arXiv Detail & Related papers (2020-12-01T00:49:17Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
We consider fairness in the integration component of data management.
We propose an approach to identify a sub-collection of features that ensure the fairness of the dataset.
arXiv Detail & Related papers (2020-06-10T20:20:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.