MedRAG: Enhancing Retrieval-augmented Generation with Knowledge Graph-Elicited Reasoning for Healthcare Copilot
- URL: http://arxiv.org/abs/2502.04413v1
- Date: Thu, 06 Feb 2025 12:27:35 GMT
- Title: MedRAG: Enhancing Retrieval-augmented Generation with Knowledge Graph-Elicited Reasoning for Healthcare Copilot
- Authors: Xuejiao Zhao, Siyan Liu, Su-Yin Yang, Chunyan Miao,
- Abstract summary: Retrieval-augmented generation (RAG) is a well-suited technique for retrieving privacy-sensitive Electronic Health Records.
This paper proposes MedRAG, a RAG model enhanced by knowledge graph (KG)-elicited reasoning for the medical domain.
Tests show MedRAG provides more specific diagnostic insights and outperforms state-of-the-art models in reducing misdiagnosis rates.
- Score: 47.77948063906033
- License:
- Abstract: Retrieval-augmented generation (RAG) is a well-suited technique for retrieving privacy-sensitive Electronic Health Records (EHR). It can serve as a key module of the healthcare copilot, helping reduce misdiagnosis for healthcare practitioners and patients. However, the diagnostic accuracy and specificity of existing heuristic-based RAG models used in the medical domain are inadequate, particularly for diseases with similar manifestations. This paper proposes MedRAG, a RAG model enhanced by knowledge graph (KG)-elicited reasoning for the medical domain that retrieves diagnosis and treatment recommendations based on manifestations. MedRAG systematically constructs a comprehensive four-tier hierarchical diagnostic KG encompassing critical diagnostic differences of various diseases. These differences are dynamically integrated with similar EHRs retrieved from an EHR database, and reasoned within a large language model. This process enables more accurate and specific decision support, while also proactively providing follow-up questions to enhance personalized medical decision-making. MedRAG is evaluated on both a public dataset DDXPlus and a private chronic pain diagnostic dataset (CPDD) collected from Tan Tock Seng Hospital, and its performance is compared against various existing RAG methods. Experimental results show that, leveraging the information integration and relational abilities of the KG, our MedRAG provides more specific diagnostic insights and outperforms state-of-the-art models in reducing misdiagnosis rates. Our code will be available at https://github.com/SNOWTEAM2023/MedRAG
Related papers
- DualMAR: Medical-Augmented Representation from Dual-Expertise Perspectives [20.369746122143063]
We propose DualMAR, a framework that enhances prediction tasks through both individual observation data and public knowledge bases.
By retrieving and angular coordinates upon polar space, DualMAR enables accurate predictions based on rich hierarchical and semantic embeddings from KG.
arXiv Detail & Related papers (2024-10-25T20:25:22Z) - MMed-RAG: Versatile Multimodal RAG System for Medical Vision Language Models [49.765466293296186]
Recent progress in Medical Large Vision-Language Models (Med-LVLMs) has opened up new possibilities for interactive diagnostic tools.
Med-LVLMs often suffer from factual hallucination, which can lead to incorrect diagnoses.
We propose a versatile multimodal RAG system, MMed-RAG, designed to enhance the factuality of Med-LVLMs.
arXiv Detail & Related papers (2024-10-16T23:03:27Z) - Large-scale Long-tailed Disease Diagnosis on Radiology Images [51.453990034460304]
RadDiag is a foundational model supporting 2D and 3D inputs across various modalities and anatomies.
Our dataset, RP3D-DiagDS, contains 40,936 cases with 195,010 scans covering 5,568 disorders.
arXiv Detail & Related papers (2023-12-26T18:20:48Z) - Leveraging A Medical Knowledge Graph into Large Language Models for
Diagnosis Prediction [7.5569033426158585]
We propose an innovative approach for augmenting the proficiency of Large Language Models (LLMs) in automated diagnosis generation.
We derive the KG from the National Library of Medicine's Unified Medical Language System (UMLS), a robust repository of biomedical knowledge.
Our approach offers an explainable diagnostic pathway, edging us closer to the realization of AI-augmented diagnostic decision support systems.
arXiv Detail & Related papers (2023-08-28T06:05:18Z) - PromptMRG: Diagnosis-Driven Prompts for Medical Report Generation [7.508437260320598]
We propose diagnosis-driven prompts for medical report generation (PromptMRG)
PromptMRG is based on encoder-decoder architecture with an extra disease classification branch.
Cross-modal feature enhancement retrieves similar reports from the database to assist the diagnosis of a query image.
arXiv Detail & Related papers (2023-08-24T07:10:31Z) - BMAD: Benchmarks for Medical Anomaly Detection [51.22159321912891]
Anomaly detection (AD) is a fundamental research problem in machine learning and computer vision.
In medical imaging, AD is especially vital for detecting and diagnosing anomalies that may indicate rare diseases or conditions.
We introduce a comprehensive evaluation benchmark for assessing anomaly detection methods on medical images.
arXiv Detail & Related papers (2023-06-20T20:23:46Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
The scarcity of labeled data for related diseases poses a huge challenge to an accurate diagnosis.
We propose a novel deep reinforcement learning framework, which introduces prior knowledge to direct the learning of diagnostic agents.
Our approach's performance was demonstrated using the well-known NIHX-ray 14 and CheXpert datasets.
arXiv Detail & Related papers (2023-06-02T01:46:31Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Query-Focused EHR Summarization to Aid Imaging Diagnosis [22.21438906817433]
We propose and evaluate models that extract relevant text snippets from patient records to provide a rough case summary.
We use groups of International Classification of Diseases (ICD) codes observed in 'future' records as noisy proxies for 'downstream' diagnoses.
We train (via distant supervision) and evaluate variants of this model on EHR data from Brigham and Women's Hospital in Boston and MIMIC-III.
arXiv Detail & Related papers (2020-04-09T16:32:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.