Learning Semantics-aware Search Operators for Genetic Programming
- URL: http://arxiv.org/abs/2502.04568v1
- Date: Thu, 06 Feb 2025 23:46:04 GMT
- Title: Learning Semantics-aware Search Operators for Genetic Programming
- Authors: Piotr WyrwiĆski, Krzysztof Krawiec,
- Abstract summary: Fitness landscapes in test-based program synthesis are known to be extremely rugged.
We propose a semantics-aware search operator that steers the search towards candidate programs that are valuable.
- Score: 0.20718016474717196
- License:
- Abstract: Fitness landscapes in test-based program synthesis are known to be extremely rugged, with even minimal modifications of programs often leading to fundamental changes in their behavior and, consequently, fitness values. Relying on fitness as the only guidance in iterative search algorithms like genetic programming is thus unnecessarily limiting, especially when combined with purely syntactic search operators that are agnostic about their impact on program behavior. In this study, we propose a semantics-aware search operator that steers the search towards candidate programs that are valuable not only actually (high fitness) but also only potentially, i.e. are likely to be turned into high-quality solutions even if their current fitness is low. The key component of the method is a graph neural network that learns to model the interactions between program instructions and processed data, and produces a saliency map over graph nodes that represents possible search decisions. When applied to a suite of symbolic regression benchmarks, the proposed method outperforms conventional tree-based genetic programming and the ablated variant of the method.
Related papers
- Searching Latent Program Spaces [0.0]
We propose an algorithm for program induction that learns a distribution over latent programs in a continuous space, enabling efficient search and test-time adaptation.
We show that can generalize beyond its training distribution and adapt to unseen tasks by utilizing test-time adaptation mechanisms.
arXiv Detail & Related papers (2024-11-13T15:50:32Z) - Guiding Genetic Programming with Graph Neural Networks [0.20718016474717196]
We propose EvoNUDGE, which uses a graph neural network to elicit additional knowledge from symbolic regression problems.
In an extensive experiment on a large number of problem instances, EvoNUDGE is shown to significantly outperform multiple baselines.
arXiv Detail & Related papers (2024-11-03T20:43:31Z) - Benchmarking Node Outlier Detection on Graphs [90.29966986023403]
Graph outlier detection is an emerging but crucial machine learning task with numerous applications.
We present the first comprehensive unsupervised node outlier detection benchmark for graphs called UNOD.
arXiv Detail & Related papers (2022-06-21T01:46:38Z) - Searching for More Efficient Dynamic Programs [61.79535031840558]
We describe a set of program transformations, a simple metric for assessing the efficiency of a transformed program, and a search procedure to improve this metric.
We show that in practice, automated search can find substantial improvements to the initial program.
arXiv Detail & Related papers (2021-09-14T20:52:55Z) - Recent Developments in Program Synthesis with Evolutionary Algorithms [1.8047694351309207]
We identify the relevant evolutionary program synthesis approaches and provide an in-depth analysis of their performance.
The most influential approaches we identify are stack-based, grammar-guided, as well as linear genetic programming.
For future work, we encourage researchers not only to use a program's output for assessing the quality of a solution but also the way towards a solution.
arXiv Detail & Related papers (2021-08-27T11:38:27Z) - Enforcing Consistency in Weakly Supervised Semantic Parsing [68.2211621631765]
We explore the use of consistency between the output programs for related inputs to reduce the impact of spurious programs.
We find that a more consistent formalism leads to improved model performance even without consistency-based training.
arXiv Detail & Related papers (2021-07-13T03:48:04Z) - Representing Partial Programs with Blended Abstract Semantics [62.20775388513027]
We introduce a technique for representing partially written programs in a program synthesis engine.
We learn an approximate execution model implemented as a modular neural network.
We show that these hybrid neuro-symbolic representations enable execution-guided synthesizers to use more powerful language constructs.
arXiv Detail & Related papers (2020-12-23T20:40:18Z) - BUSTLE: Bottom-Up Program Synthesis Through Learning-Guided Exploration [72.88493072196094]
We present a new synthesis approach that leverages learning to guide a bottom-up search over programs.
In particular, we train a model to prioritize compositions of intermediate values during search conditioned on a set of input-output examples.
We show that the combination of learning and bottom-up search is remarkably effective, even with simple supervised learning approaches.
arXiv Detail & Related papers (2020-07-28T17:46:18Z) - Learning Differentiable Programs with Admissible Neural Heuristics [43.54820901841979]
We study the problem of learning differentiable functions expressed as programs in a domain-specific language.
We frame this optimization problem as a search in a weighted graph whose paths encode top-down derivations of program syntax.
Our key innovation is to view various classes of neural networks as continuous relaxations over the space of programs.
arXiv Detail & Related papers (2020-07-23T16:07:39Z) - Strong Generalization and Efficiency in Neural Programs [69.18742158883869]
We study the problem of learning efficient algorithms that strongly generalize in the framework of neural program induction.
By carefully designing the input / output interfaces of the neural model and through imitation, we are able to learn models that produce correct results for arbitrary input sizes.
arXiv Detail & Related papers (2020-07-07T17:03:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.