Overcoming Fake Solutions in Semi-Dual Neural Optimal Transport: A Smoothing Approach for Learning the Optimal Transport Plan
- URL: http://arxiv.org/abs/2502.04583v1
- Date: Fri, 07 Feb 2025 00:37:12 GMT
- Title: Overcoming Fake Solutions in Semi-Dual Neural Optimal Transport: A Smoothing Approach for Learning the Optimal Transport Plan
- Authors: Jaemoo Choi, Jaewoong Choi, Dohyun Kwon,
- Abstract summary: Semi-dual Neural OT, a widely used approach for learning OT Maps with neural networks, often generates fake solutions that fail to transfer one distribution to another accurately.
We propose a novel method, OTP, which learns both the OT Map and the Optimal Transport Plan, representing the optimal coupling between two distributions.
Our experiments show that the OTP model recovers the optimal transport map where existing methods fail and outperforms current OT-based models in image-to-image translation tasks.
- Score: 5.374547520354591
- License:
- Abstract: We address the convergence problem in learning the Optimal Transport (OT) map, where the OT Map refers to a map from one distribution to another while minimizing the transport cost. Semi-dual Neural OT, a widely used approach for learning OT Maps with neural networks, often generates fake solutions that fail to transfer one distribution to another accurately. We identify a sufficient condition under which the max-min solution of Semi-dual Neural OT recovers the true OT Map. Moreover, to address cases when this sufficient condition is not satisfied, we propose a novel method, OTP, which learns both the OT Map and the Optimal Transport Plan, representing the optimal coupling between two distributions. Under sharp assumptions on the distributions, we prove that our model eliminates the fake solution issue and correctly solves the OT problem. Our experiments show that the OTP model recovers the optimal transport map where existing methods fail and outperforms current OT-based models in image-to-image translation tasks. Notably, the OTP model can learn stochastic transport maps when deterministic OT Maps do not exist, such as one-to-many tasks like colorization.
Related papers
- A Statistical Learning Perspective on Semi-dual Adversarial Neural Optimal Transport Solvers [65.28989155951132]
In this paper, we establish upper bounds on the generalization error of an approximate OT map recovered by the minimax quadratic OT solver.
While our analysis focuses on the quadratic OT, we believe that similar bounds could be derived for more general OT formulations.
arXiv Detail & Related papers (2025-02-03T12:37:20Z) - Improving Neural Optimal Transport via Displacement Interpolation [16.474572112062535]
Optimal Transport (OT) theory investigates the cost-minimizing transport map that moves a source distribution to a target distribution.
We propose a novel method to improve stability and achieve a better approximation of the OT Map by exploiting displacement.
We demonstrate that DIOTM outperforms existing OT-based models on image-to-image translation tasks.
arXiv Detail & Related papers (2024-10-03T16:42:23Z) - OT-Net: A Reusable Neural Optimal Transport Solver [26.153287448650126]
A novel reusable neural OT solver OT-Net is presented.
OT-Net learns Brenier's height representation via the neural network to obtain its potential.
It then gained the OT map by computing the gradient of the potential.
arXiv Detail & Related papers (2023-06-14T04:11:38Z) - Generative Modeling through the Semi-dual Formulation of Unbalanced
Optimal Transport [9.980822222343921]
We propose a novel generative model based on the semi-dual formulation of Unbalanced Optimal Transport (UOT)
Unlike OT, UOT relaxes the hard constraint on distribution matching. This approach provides better robustness against outliers, stability during training, and faster convergence.
Our model outperforms existing OT-based generative models, achieving FID scores of 2.97 on CIFAR-10 and 6.36 on CelebA-HQ-256.
arXiv Detail & Related papers (2023-05-24T06:31:05Z) - Learning Optimal Transport Between two Empirical Distributions with
Normalizing Flows [12.91637880428221]
We propose to leverage the flexibility of neural networks to learn an approximate optimal transport map.
We show that a particular instance of invertible neural networks, namely the normalizing flows, can be used to approximate the solution of this OT problem.
arXiv Detail & Related papers (2022-07-04T08:08:47Z) - Unpaired Image Super-Resolution with Optimal Transport Maps [128.1189695209663]
Real-world image super-resolution (SR) tasks often do not have paired datasets limiting the application of supervised techniques.
We propose an algorithm for unpaired SR which learns an unbiased OT map for the perceptual transport cost.
Our algorithm provides nearly state-of-the-art performance on the large-scale unpaired AIM-19 dataset.
arXiv Detail & Related papers (2022-02-02T16:21:20Z) - Neural Optimal Transport [82.2689844201373]
We present a novel neural-networks-based algorithm to compute optimal transport maps and plans for strong and weak transport costs.
We prove that neural networks are universal approximators of transport plans between probability distributions.
arXiv Detail & Related papers (2022-01-28T16:24:13Z) - Near-optimal estimation of smooth transport maps with kernel
sums-of-squares [81.02564078640275]
Under smoothness conditions, the squared Wasserstein distance between two distributions could be efficiently computed with appealing statistical error upper bounds.
The object of interest for applications such as generative modeling is the underlying optimal transport map.
We propose the first tractable algorithm for which the statistical $L2$ error on the maps nearly matches the existing minimax lower-bounds for smooth map estimation.
arXiv Detail & Related papers (2021-12-03T13:45:36Z) - Generative Modeling with Optimal Transport Maps [83.59805931374197]
Optimal Transport (OT) has become a powerful tool for large-scale generative modeling tasks.
We show that the OT map itself can be used as a generative model, providing comparable performance.
arXiv Detail & Related papers (2021-10-06T18:17:02Z) - Do Neural Optimal Transport Solvers Work? A Continuous Wasserstein-2
Benchmark [133.46066694893318]
We evaluate the performance of neural network-based solvers for optimal transport.
We find that existing solvers do not recover optimal transport maps even though they perform well in downstream tasks.
arXiv Detail & Related papers (2021-06-03T15:59:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.