AIQViT: Architecture-Informed Post-Training Quantization for Vision Transformers
- URL: http://arxiv.org/abs/2502.04628v1
- Date: Fri, 07 Feb 2025 03:04:50 GMT
- Title: AIQViT: Architecture-Informed Post-Training Quantization for Vision Transformers
- Authors: Runqing Jiang, Ye Zhang, Longguang Wang, Pengpeng Yu, Yulan Guo,
- Abstract summary: Post-training quantization (PTQ) has emerged as a promising solution for reducing the storage and computational cost of vision transformers (ViTs)
This paper proposes an innovative PTQ method tailored for ViTs, termed AIQViT (Architecture-Informed Post-training Quantization for ViTs)
- Score: 42.535119270045605
- License:
- Abstract: Post-training quantization (PTQ) has emerged as a promising solution for reducing the storage and computational cost of vision transformers (ViTs). Recent advances primarily target at crafting quantizers to deal with peculiar activations characterized by ViTs. However, most existing methods underestimate the information loss incurred by weight quantization, resulting in significant performance deterioration, particularly in low-bit cases. Furthermore, a common practice in quantizing post-Softmax activations of ViTs is to employ logarithmic transformations, which unfortunately prioritize less informative values around zero. This approach introduces additional redundancies, ultimately leading to suboptimal quantization efficacy. To handle these, this paper proposes an innovative PTQ method tailored for ViTs, termed AIQViT (Architecture-Informed Post-training Quantization for ViTs). First, we design an architecture-informed low rank compensation mechanism, wherein learnable low-rank weights are introduced to compensate for the degradation caused by weight quantization. Second, we design a dynamic focusing quantizer to accommodate the unbalanced distribution of post-Softmax activations, which dynamically selects the most valuable interval for higher quantization resolution. Extensive experiments on five vision tasks, including image classification, object detection, instance segmentation, point cloud classification, and point cloud part segmentation, demonstrate the superiority of AIQViT over state-of-the-art PTQ methods.
Related papers
- DopQ-ViT: Towards Distribution-Friendly and Outlier-Aware Post-Training Quantization for Vision Transformers [2.0862654518798034]
We propose a Distribution-Friendly and Outlier-Aware Post-training Quantization method for Vision Transformers.
DopQ-ViT analyzes the inefficiencies of current quantizers and introduces a distribution-friendly Tan Quantizer called TanQ.
DopQ-ViT has been extensively validated and significantly improves the performance of quantization models.
arXiv Detail & Related papers (2024-08-06T16:40:04Z) - AdaLog: Post-Training Quantization for Vision Transformers with Adaptive Logarithm Quantizer [54.713778961605115]
Vision Transformer (ViT) has become one of the most prevailing fundamental backbone networks in the computer vision community.
We propose a novel non-uniform quantizer, dubbed the Adaptive Logarithm AdaLog (AdaLog) quantizer.
arXiv Detail & Related papers (2024-07-17T18:38:48Z) - Towards Accurate Post-Training Quantization of Vision Transformers via Error Reduction [48.740630807085566]
Post-training quantization (PTQ) for vision transformers (ViTs) has received increasing attention from both academic and industrial communities.
Current methods fail to account for the complex interactions between quantized weights and activations, resulting in significant quantization errors and suboptimal performance.
This paper presents ERQ, an innovative two-step PTQ method specifically crafted to reduce quantization errors arising from activation and weight quantization sequentially.
arXiv Detail & Related papers (2024-07-09T12:06:03Z) - ADFQ-ViT: Activation-Distribution-Friendly Post-Training Quantization for Vision Transformers [7.155242379236052]
Quantization of Vision Transformers (ViTs) has emerged as a promising solution to mitigate these challenges.
Existing methods still suffer from significant accuracy loss at low-bit.
ADFQ-ViT provides significant improvements over various baselines in image classification, object detection, and instance segmentation tasks at 4-bit.
arXiv Detail & Related papers (2024-07-03T02:41:59Z) - I&S-ViT: An Inclusive & Stable Method for Pushing the Limit of Post-Training ViTs Quantization [49.17407185195788]
We introduce I&S-ViT, a novel method that regulates the PTQ of ViTs in an inclusive and stable fashion.
I&S-ViT elevates the performance of 3-bit ViT-B by an impressive 50.68%.
arXiv Detail & Related papers (2023-11-16T13:07:47Z) - Towards Accurate Post-Training Quantization for Vision Transformer [48.779346466374406]
Existing post-training quantization methods still cause severe performance drops.
APQ-ViT surpasses the existing post-training quantization methods by convincing margins.
arXiv Detail & Related papers (2023-03-25T03:05:26Z) - RepQ-ViT: Scale Reparameterization for Post-Training Quantization of
Vision Transformers [2.114921680609289]
We propose RepQ-ViT, a novel PTQ framework for vision transformers (ViTs)
RepQ-ViT decouples the quantization and inference processes.
It can outperform existing strong baselines and encouragingly improve the accuracy of 4-bit PTQ of ViTs to a usable level.
arXiv Detail & Related papers (2022-12-16T02:52:37Z) - Post-Training Quantization for Vision Transformer [85.57953732941101]
We present an effective post-training quantization algorithm for reducing the memory storage and computational costs of vision transformers.
We can obtain an 81.29% top-1 accuracy using DeiT-B model on ImageNet dataset with about 8-bit quantization.
arXiv Detail & Related papers (2021-06-27T06:27:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.