High-Speed Dynamic 3D Imaging with Sensor Fusion Splatting
- URL: http://arxiv.org/abs/2502.04630v1
- Date: Fri, 07 Feb 2025 03:17:31 GMT
- Title: High-Speed Dynamic 3D Imaging with Sensor Fusion Splatting
- Authors: Zihao Zou, Ziyuan Qu, Xi Peng, Vivek Boominathan, Adithya Pediredla, Praneeth Chakravarthula,
- Abstract summary: Capturing and reconstructing high-speed dynamic 3D scenes has numerous applications in computer graphics, vision, and interdisciplinary fields such as robotics, aerodynamics, and evolutionary biology.
Traditional RGB cameras suffer from low frame rates, limited exposure times, and narrow baselines.
We propose a novel sensor fusion approach using Gaussian splatting, which combines RGB, depth, and event cameras to capture and reconstruct scenes at high speeds.
- Score: 15.309934457166394
- License:
- Abstract: Capturing and reconstructing high-speed dynamic 3D scenes has numerous applications in computer graphics, vision, and interdisciplinary fields such as robotics, aerodynamics, and evolutionary biology. However, achieving this using a single imaging modality remains challenging. For instance, traditional RGB cameras suffer from low frame rates, limited exposure times, and narrow baselines. To address this, we propose a novel sensor fusion approach using Gaussian splatting, which combines RGB, depth, and event cameras to capture and reconstruct deforming scenes at high speeds. The key insight of our method lies in leveraging the complementary strengths of these imaging modalities: RGB cameras capture detailed color information, event cameras record rapid scene changes with microsecond resolution, and depth cameras provide 3D scene geometry. To unify the underlying scene representation across these modalities, we represent the scene using deformable 3D Gaussians. To handle rapid scene movements, we jointly optimize the 3D Gaussian parameters and their temporal deformation fields by integrating data from all three sensor modalities. This fusion enables efficient, high-quality imaging of fast and complex scenes, even under challenging conditions such as low light, narrow baselines, or rapid motion. Experiments on synthetic and real datasets captured with our prototype sensor fusion setup demonstrate that our method significantly outperforms state-of-the-art techniques, achieving noticeable improvements in both rendering fidelity and structural accuracy.
Related papers
- SweepEvGS: Event-Based 3D Gaussian Splatting for Macro and Micro Radiance Field Rendering from a Single Sweep [48.34647667445792]
SweepEvGS is a novel hardware-integrated method that leverages event cameras for robust and accurate novel view synthesis from a single sweep.
We validate the robustness and efficiency of SweepEvGS through experiments in three different imaging settings.
Our results demonstrate that SweepEvGS surpasses existing methods in visual rendering quality, rendering speed, and computational efficiency.
arXiv Detail & Related papers (2024-12-16T09:09:42Z) - E-3DGS: Gaussian Splatting with Exposure and Motion Events [29.042018288378447]
We propose E-3DGS, a novel event-based approach that partitions events into motion and exposure.
We introduce a novel integration of 3DGS with exposure events for high-quality reconstruction of explicit scene representations.
Our method is faster and delivers better reconstruction quality than event-based NeRF while being more cost-effective than NeRF methods.
arXiv Detail & Related papers (2024-10-22T13:17:20Z) - EF-3DGS: Event-Aided Free-Trajectory 3D Gaussian Splatting [76.02450110026747]
Event cameras, inspired by biological vision, record pixel-wise intensity changes asynchronously with high temporal resolution.
We propose Event-Aided Free-Trajectory 3DGS, which seamlessly integrates the advantages of event cameras into 3DGS.
We evaluate our method on the public Tanks and Temples benchmark and a newly collected real-world dataset, RealEv-DAVIS.
arXiv Detail & Related papers (2024-10-20T13:44:24Z) - SpikeGS: 3D Gaussian Splatting from Spike Streams with High-Speed Camera Motion [46.23575738669567]
Novel View Synthesis plays a crucial role by generating new 2D renderings from multi-view images of 3D scenes.
High-frame-rate dense 3D reconstruction emerges as a vital technique, enabling detailed and accurate modeling of real-world objects or scenes.
Spike cameras, a novel type of neuromorphic sensor, continuously record scenes with an ultra-high temporal resolution.
arXiv Detail & Related papers (2024-07-14T03:19:30Z) - EvaGaussians: Event Stream Assisted Gaussian Splatting from Blurry Images [36.91327728871551]
3D Gaussian Splatting (3D-GS) has demonstrated exceptional capabilities in 3D scene reconstruction and novel view synthesis.
We introduce Event Stream Assisted Gaussian Splatting (EvaGaussians), a novel approach that integrates event streams captured by an event camera to assist in reconstructing high-quality 3D-GS from blurry images.
arXiv Detail & Related papers (2024-05-29T04:59:27Z) - MM3DGS SLAM: Multi-modal 3D Gaussian Splatting for SLAM Using Vision, Depth, and Inertial Measurements [59.70107451308687]
We show for the first time that using 3D Gaussians for map representation with unposed camera images and inertial measurements can enable accurate SLAM.
Our method, MM3DGS, addresses the limitations of prior rendering by enabling faster scale awareness, and improved trajectory tracking.
We also release a multi-modal dataset, UT-MM, collected from a mobile robot equipped with a camera and an inertial measurement unit.
arXiv Detail & Related papers (2024-04-01T04:57:41Z) - Gaussian Splatting on the Move: Blur and Rolling Shutter Compensation for Natural Camera Motion [25.54868552979793]
We present a method that adapts to camera motion and allows high-quality scene reconstruction with handheld video data.
Our results with both synthetic and real data demonstrate superior performance in mitigating camera motion over existing methods.
arXiv Detail & Related papers (2024-03-20T06:19:41Z) - VastGaussian: Vast 3D Gaussians for Large Scene Reconstruction [59.40711222096875]
We present VastGaussian, the first method for high-quality reconstruction and real-time rendering on large scenes based on 3D Gaussian Splatting.
Our approach outperforms existing NeRF-based methods and achieves state-of-the-art results on multiple large scene datasets.
arXiv Detail & Related papers (2024-02-27T11:40:50Z) - Shakes on a Plane: Unsupervised Depth Estimation from Unstabilized
Photography [54.36608424943729]
We show that in a ''long-burst'', forty-two 12-megapixel RAW frames captured in a two-second sequence, there is enough parallax information from natural hand tremor alone to recover high-quality scene depth.
We devise a test-time optimization approach that fits a neural RGB-D representation to long-burst data and simultaneously estimates scene depth and camera motion.
arXiv Detail & Related papers (2022-12-22T18:54:34Z) - Urban Radiance Fields [77.43604458481637]
We perform 3D reconstruction and novel view synthesis from data captured by scanning platforms commonly deployed for world mapping in urban outdoor environments.
Our approach extends Neural Radiance Fields, which has been demonstrated to synthesize realistic novel images for small scenes in controlled settings.
Each of these three extensions provides significant performance improvements in experiments on Street View data.
arXiv Detail & Related papers (2021-11-29T15:58:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.