G2PDiffusion: Genotype-to-Phenotype Prediction with Diffusion Models
- URL: http://arxiv.org/abs/2502.04684v2
- Date: Tue, 11 Feb 2025 04:42:11 GMT
- Title: G2PDiffusion: Genotype-to-Phenotype Prediction with Diffusion Models
- Authors: Mengdi Liu, Zhangyang Gao, Hong Chang, Stan Z. Li, Shiguang Shan, Xilin Chen,
- Abstract summary: This paper introduces G2PDiffusion, the first-of-its-kind diffusion model designed for genotype-to-phenotype generation across multiple species.
We use images to represent morphological phenotypes across species and redefine phenotype prediction as conditional image generation.
- Score: 108.94237816552024
- License:
- Abstract: Discovering the genotype-phenotype relationship is crucial for genetic engineering, which will facilitate advances in fields such as crop breeding, conservation biology, and personalized medicine. Current research usually focuses on single species and small datasets due to limitations in phenotypic data collection, especially for traits that require visual assessments or physical measurements. Deciphering complex and composite phenotypes, such as morphology, from genetic data at scale remains an open question. To break through traditional generic models that rely on simplified assumptions, this paper introduces G2PDiffusion, the first-of-its-kind diffusion model designed for genotype-to-phenotype generation across multiple species. Specifically, we use images to represent morphological phenotypes across species and redefine phenotype prediction as conditional image generation. To this end, this paper introduces an environment-enhanced DNA sequence conditioner and trains a stable diffusion model with a novel alignment method to improve genotype-to-phenotype consistency. Extensive experiments demonstrate that our approach enhances phenotype prediction accuracy across species, capturing subtle genetic variations that contribute to observable traits.
Related papers
- Revealing Subtle Phenotypes in Small Microscopy Datasets Using Latent Diffusion Models [0.815557531820863]
We propose a novel approach that leverages pre-trained latent diffusion models to uncover subtle phenotypic changes.
Our findings reveal that our approach enables effective detection of phenotypic variations, capturing both visually apparent and imperceptible differences.
arXiv Detail & Related papers (2025-02-12T15:45:19Z) - CSGDN: Contrastive Signed Graph Diffusion Network for Predicting Crop Gene-phenotype Associations [6.5678927417916455]
We propose a Contrastive Signed Graph Diffusion Network, CSGDN, to learn robust node representations with fewer training samples to achieve higher link prediction accuracy.
We conduct experiments to validate the performance of CSGDN on three crop datasets: Gossypium hirsutum, Brassica napus, and Triticum turgidum.
arXiv Detail & Related papers (2024-10-10T01:01:10Z) - Predicting Genetic Mutation from Whole Slide Images via Biomedical-Linguistic Knowledge Enhanced Multi-label Classification [119.13058298388101]
We develop a Biological-knowledge enhanced PathGenomic multi-label Transformer to improve genetic mutation prediction performances.
BPGT first establishes a novel gene encoder that constructs gene priors by two carefully designed modules.
BPGT then designs a label decoder that finally performs genetic mutation prediction by two tailored modules.
arXiv Detail & Related papers (2024-06-05T06:42:27Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
We present a geometry-constrained probabilistic modeling treatment to resolve the identified issues.
We incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space.
A spectral graph-theoretic method is devised to estimate the number of potential novel classes.
arXiv Detail & Related papers (2024-03-02T00:56:05Z) - On The Nature Of The Phenotype In Tree Genetic Programming [3.8642945120580703]
We discuss the basic concepts of genotypes and phenotypes in tree-based GP (TGP)
We then analyze their behavior using five benchmark datasets.
To generate phenotypes, we provide a unique technique for removing semantically ineffective code from GP trees.
arXiv Detail & Related papers (2024-02-12T19:19:29Z) - Analyzing Bias in Diffusion-based Face Generation Models [75.80072686374564]
Diffusion models are increasingly popular in synthetic data generation and image editing applications.
We investigate the presence of bias in diffusion-based face generation models with respect to attributes such as gender, race, and age.
We examine how dataset size affects the attribute composition and perceptual quality of both diffusion and Generative Adversarial Network (GAN) based face generation models.
arXiv Detail & Related papers (2023-05-10T18:22:31Z) - Unsupervised ensemble-based phenotyping helps enhance the
discoverability of genes related to heart morphology [57.25098075813054]
We propose a new framework for gene discovery entitled Un Phenotype Ensembles.
It builds a redundant yet highly expressive representation by pooling a set of phenotypes learned in an unsupervised manner.
These phenotypes are then analyzed via (GWAS), retaining only highly confident and stable associations.
arXiv Detail & Related papers (2023-01-07T18:36:44Z) - Phenotype Search Trajectory Networks for Linear Genetic Programming [8.079719491562305]
Neutrality is the observation that some mutations do not lead to phenotypic changes.
We study the search trajectories of a genetic programming system as graph-based models.
We measure the characteristics of phenotypes including their genotypic abundance and Kolmogorov complexity.
arXiv Detail & Related papers (2022-11-15T21:20:50Z) - rfPhen2Gen: A machine learning based association study of brain imaging
phenotypes to genotypes [71.1144397510333]
We learned machine learning models to predict SNPs using 56 brain imaging QTs.
SNPs within the known Alzheimer disease (AD) risk gene APOE had lowest RMSE for lasso and random forest.
Random forests identified additional SNPs that were not prioritized by the linear models but are known to be associated with brain-related disorders.
arXiv Detail & Related papers (2022-03-31T20:15:22Z) - A Cross-Level Information Transmission Network for Predicting Phenotype
from New Genotype: Application to Cancer Precision Medicine [37.442717660492384]
We propose a novel Cross-LEvel Information Transmission network (CLEIT) framework.
Inspired by domain adaptation, CLEIT first learns the latent representation of high-level domain then uses it as ground-truth embedding.
We demonstrate the effectiveness and performance boost of CLEIT in predicting anti-cancer drug sensitivity from somatic mutations.
arXiv Detail & Related papers (2020-10-09T22:01:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.