Every Software as an Agent: Blueprint and Case Study
- URL: http://arxiv.org/abs/2502.04747v1
- Date: Fri, 07 Feb 2025 08:29:09 GMT
- Title: Every Software as an Agent: Blueprint and Case Study
- Authors: Mengwei Xu,
- Abstract summary: We advocate to endow large language models (LLMs) with access to the software internals (source code and runtime context) and the permission to dynamically inject generated code into software for execution.
We present an overall design architecture and case studies on two popular web-based desktop applications.
- Score: 0.6655461660736298
- License:
- Abstract: The rise of (multimodal) large language models (LLMs) has shed light on software agent -- where software can understand and follow user instructions in natural language. However, existing approaches such as API-based and GUI-based agents are far from satisfactory at accuracy and efficiency aspects. Instead, we advocate to endow LLMs with access to the software internals (source code and runtime context) and the permission to dynamically inject generated code into software for execution. In such a whitebox setting, one may better leverage the software context and the coding ability of LLMs. We then present an overall design architecture and case studies on two popular web-based desktop applications. We also give in-depth discussion of the challenges and future directions. We deem that such a new paradigm has the potential to fundamentally overturn the existing software agent design, and finally creating a digital world in which software can comprehend, operate, collaborate, and even think to meet complex user needs.
Related papers
- Large Action Models: From Inception to Implementation [51.81485642442344]
Large Action Models (LAMs) are designed for action generation and execution within dynamic environments.
LAMs hold the potential to transform AI from passive language understanding to active task completion.
We present a comprehensive framework for developing LAMs, offering a systematic approach to their creation, from inception to deployment.
arXiv Detail & Related papers (2024-12-13T11:19:56Z) - Human-In-the-Loop Software Development Agents [12.830816751625829]
Large Language Models (LLMs)-based multi-agent paradigms for software engineering are introduced to automatically resolve software development tasks.
In this paper, we introduce a Human-in-the-loop LLM-based Agents framework (HULA) for software development.
We design, implement, and deploy the HULA framework into Atlassian for internal uses.
arXiv Detail & Related papers (2024-11-19T23:22:33Z) - OpenHands: An Open Platform for AI Software Developers as Generalist Agents [109.8507367518992]
We introduce OpenHands, a platform for the development of AI agents that interact with the world in similar ways to a human developer.
We describe how the platform allows for the implementation of new agents, safe interaction with sandboxed environments for code execution, and incorporation of evaluation benchmarks.
arXiv Detail & Related papers (2024-07-23T17:50:43Z) - Agentless: Demystifying LLM-based Software Engineering Agents [12.19683999553113]
We build Agentless -- an agentless approach to automatically solve software development problems.
Compared to the verbose and complex setup of agent-based approaches, Agentless employs a simplistic three-phase process of localization, repair, and patch validation.
Our results on the popular SWE-bench Lite benchmark show that surprisingly the simplistic Agentless is able to achieve both the highest performance and low cost.
arXiv Detail & Related papers (2024-07-01T17:24:45Z) - Agent-Driven Automatic Software Improvement [55.2480439325792]
This research proposal aims to explore innovative solutions by focusing on the deployment of agents powered by Large Language Models (LLMs)
The iterative nature of agents, which allows for continuous learning and adaptation, can help surpass common challenges in code generation.
We aim to use the iterative feedback in these systems to further fine-tune the LLMs underlying the agents, becoming better aligned to the task of automated software improvement.
arXiv Detail & Related papers (2024-06-24T15:45:22Z) - Requirements are All You Need: From Requirements to Code with LLMs [0.0]
Large language models (LLMs) can be applied to software engineering tasks.
This paper introduces a tailored LLM for automating the generation of code snippets from well-structured requirements documents.
We demonstrate the LLM's proficiency in comprehending intricate user requirements and producing robust design and code solutions.
arXiv Detail & Related papers (2024-06-14T14:57:35Z) - Morescient GAI for Software Engineering (Extended Version) [2.4861619769660637]
We present a vision and roadmap for how "Morescient" GAI models can be engineered, evolved and disseminated according to the principles of open science.
arXiv Detail & Related papers (2024-06-07T07:38:33Z) - Towards a copilot in BIM authoring tool using a large language model-based agent for intelligent human-machine interaction [0.40964539027092917]
Designers often seek to interact with the software in a more intelligent and lightweight manner.
We propose an autonomous agent framework that can function as a copilot in the BIM authoring tool.
In a case study based on the BIM authoring software Vectorworks, we implemented a software prototype to integrate the proposed framework seamlessly.
arXiv Detail & Related papers (2024-06-02T17:47:57Z) - SWE-agent: Agent-Computer Interfaces Enable Automated Software Engineering [79.07755560048388]
SWE-agent is a system that facilitates LM agents to autonomously use computers to solve software engineering tasks.
SWE-agent's custom agent-computer interface (ACI) significantly enhances an agent's ability to create and edit code files, navigate entire repositories, and execute tests and other programs.
We evaluate SWE-agent on SWE-bench and HumanEvalFix, achieving state-of-the-art performance on both with a pass@1 rate of 12.5% and 87.7%, respectively.
arXiv Detail & Related papers (2024-05-06T17:41:33Z) - CodeTF: One-stop Transformer Library for State-of-the-art Code LLM [72.1638273937025]
We present CodeTF, an open-source Transformer-based library for state-of-the-art Code LLMs and code intelligence.
Our library supports a collection of pretrained Code LLM models and popular code benchmarks.
We hope CodeTF is able to bridge the gap between machine learning/generative AI and software engineering.
arXiv Detail & Related papers (2023-05-31T05:24:48Z) - Low-code LLM: Graphical User Interface over Large Language Models [115.08718239772107]
This paper introduces a novel human-LLM interaction framework, Low-code LLM.
It incorporates six types of simple low-code visual programming interactions to achieve more controllable and stable responses.
We highlight three advantages of the low-code LLM: user-friendly interaction, controllable generation, and wide applicability.
arXiv Detail & Related papers (2023-04-17T09:27:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.