Self-Supervised Learning for Pre-training Capsule Networks: Overcoming Medical Imaging Dataset Challenges
- URL: http://arxiv.org/abs/2502.04748v1
- Date: Fri, 07 Feb 2025 08:32:26 GMT
- Title: Self-Supervised Learning for Pre-training Capsule Networks: Overcoming Medical Imaging Dataset Challenges
- Authors: Heba El-Shimy, Hind Zantout, Michael A. Lones, Neamat El Gayar,
- Abstract summary: This study investigates self-supervised learning methods for pre-training capsule networks in polyp diagnostics for colon cancer.
We used the PICCOLO dataset, comprising 3,433 samples, which exemplifies typical challenges in medical datasets.
Our findings suggest contrastive learning and in-painting techniques are suitable auxiliary tasks for self-supervised learning in the medical domain.
- Score: 2.9248916859490173
- License:
- Abstract: Deep learning techniques are increasingly being adopted in diagnostic medical imaging. However, the limited availability of high-quality, large-scale medical datasets presents a significant challenge, often necessitating the use of transfer learning approaches. This study investigates self-supervised learning methods for pre-training capsule networks in polyp diagnostics for colon cancer. We used the PICCOLO dataset, comprising 3,433 samples, which exemplifies typical challenges in medical datasets: small size, class imbalance, and distribution shifts between data splits. Capsule networks offer inherent interpretability due to their architecture and inter-layer information routing mechanism. However, their limited native implementation in mainstream deep learning frameworks and the lack of pre-trained versions pose a significant challenge. This is particularly true if aiming to train them on small medical datasets, where leveraging pre-trained weights as initial parameters would be beneficial. We explored two auxiliary self-supervised learning tasks, colourisation and contrastive learning, for capsule network pre-training. We compared self-supervised pre-trained models against alternative initialisation strategies. Our findings suggest that contrastive learning and in-painting techniques are suitable auxiliary tasks for self-supervised learning in the medical domain. These techniques helped guide the model to capture important visual features that are beneficial for the downstream task of polyp classification, increasing its accuracy by 5.26% compared to other weight initialisation methods.
Related papers
- Transfer or Self-Supervised? Bridging the Performance Gap in Medical Imaging [6.744847405966574]
This paper compares the performance and robustness of transfer learning and self-supervised learning in the medical field.
We tested data with several common issues in medical domains, such as data imbalance, data scarcity, and domain mismatch.
We provide recommendations to help users apply transfer learning and self-supervised learning methods in medical areas.
arXiv Detail & Related papers (2024-07-08T04:14:52Z) - Self-Supervised Pre-Training with Contrastive and Masked Autoencoder
Methods for Dealing with Small Datasets in Deep Learning for Medical Imaging [8.34398674359296]
Deep learning in medical imaging has the potential to minimize the risk of diagnostic errors, reduce radiologist workload, and accelerate diagnosis.
Training such deep learning models requires large and accurate datasets, with annotations for all training samples.
To address this challenge, deep learning models can be pre-trained on large image datasets without annotations using methods from the field of self-supervised learning.
arXiv Detail & Related papers (2023-08-12T11:31:01Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Understanding the Tricks of Deep Learning in Medical Image Segmentation:
Challenges and Future Directions [66.40971096248946]
In this paper, we collect a series of MedISeg tricks for different model implementation phases.
We experimentally explore the effectiveness of these tricks on consistent baselines.
We also open-sourced a strong MedISeg repository, where each component has the advantage of plug-and-play.
arXiv Detail & Related papers (2022-09-21T12:30:05Z) - When Accuracy Meets Privacy: Two-Stage Federated Transfer Learning
Framework in Classification of Medical Images on Limited Data: A COVID-19
Case Study [77.34726150561087]
COVID-19 pandemic has spread rapidly and caused a shortage of global medical resources.
CNN has been widely utilized and verified in analyzing medical images.
arXiv Detail & Related papers (2022-03-24T02:09:41Z) - On the Robustness of Pretraining and Self-Supervision for a Deep
Learning-based Analysis of Diabetic Retinopathy [70.71457102672545]
We compare the impact of different training procedures for diabetic retinopathy grading.
We investigate different aspects such as quantitative performance, statistics of the learned feature representations, interpretability and robustness to image distortions.
Our results indicate that models from ImageNet pretraining report a significant increase in performance, generalization and robustness to image distortions.
arXiv Detail & Related papers (2021-06-25T08:32:45Z) - About Explicit Variance Minimization: Training Neural Networks for
Medical Imaging With Limited Data Annotations [2.3204178451683264]
Variance Aware Training (VAT) method exploits this property by introducing the variance error into the model loss function.
We validate VAT on three medical imaging datasets from diverse domains and various learning objectives.
arXiv Detail & Related papers (2021-05-28T21:34:04Z) - Self supervised contrastive learning for digital histopathology [0.0]
We use a contrastive self-supervised learning method called SimCLR that achieved state-of-the-art results on natural-scene images.
We find that combining multiple multi-organ datasets with different types of staining and resolution properties improves the quality of the learned features.
Linear classifiers trained on top of the learned features show that networks pretrained on digital histopathology datasets perform better than ImageNet pretrained networks.
arXiv Detail & Related papers (2020-11-27T19:18:45Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Confident Coreset for Active Learning in Medical Image Analysis [57.436224561482966]
We propose a novel active learning method, confident coreset, which considers both uncertainty and distribution for effectively selecting informative samples.
By comparative experiments on two medical image analysis tasks, we show that our method outperforms other active learning methods.
arXiv Detail & Related papers (2020-04-05T13:46:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.