Evaluating Standard and Dialectal Frisian ASR: Multilingual Fine-tuning and Language Identification for Improved Low-resource Performance
- URL: http://arxiv.org/abs/2502.04883v1
- Date: Fri, 07 Feb 2025 12:42:46 GMT
- Title: Evaluating Standard and Dialectal Frisian ASR: Multilingual Fine-tuning and Language Identification for Improved Low-resource Performance
- Authors: Reihaneh Amooie, Wietse de Vries, Yun Hao, Jelske Dijkstra, Matt Coler, Martijn Wieling,
- Abstract summary: State-of-the-art methods deploy self-supervised transfer learning where a model pre-trained on large amounts of data is fine-tuned using little labeled data.
We show that Frisian ASR performance can be improved by using multilingual fine-tuning data and an auxiliary language identification task.
- Score: 9.624005980086707
- License:
- Abstract: Automatic Speech Recognition (ASR) performance for low-resource languages is still far behind that of higher-resource languages such as English, due to a lack of sufficient labeled data. State-of-the-art methods deploy self-supervised transfer learning where a model pre-trained on large amounts of data is fine-tuned using little labeled data in a target low-resource language. In this paper, we present and examine a method for fine-tuning an SSL-based model in order to improve the performance for Frisian and its regional dialects (Clay Frisian, Wood Frisian, and South Frisian). We show that Frisian ASR performance can be improved by using multilingual (Frisian, Dutch, English and German) fine-tuning data and an auxiliary language identification task. In addition, our findings show that performance on dialectal speech suffers substantially, and, importantly, that this effect is moderated by the elicitation approach used to collect the dialectal data. Our findings also particularly suggest that relying solely on standard language data for ASR evaluation may underestimate real-world performance, particularly in languages with substantial dialectal variation.
Related papers
- Investigating the Impact of Language-Adaptive Fine-Tuning on Sentiment Analysis in Hausa Language Using AfriBERTa [2.5055584842618175]
Sentiment analysis (SA) plays a vital role in Natural Language Processing (NLP) by identifying sentiments expressed in text.
This study investigates the effectiveness of Language-Adaptive Fine-Tuning (LAFT) to improve SA performance in Hausa.
arXiv Detail & Related papers (2025-01-19T11:52:46Z) - Enhancing Multilingual ASR for Unseen Languages via Language Embedding Modeling [50.62091603179394]
Whisper, one of the most advanced ASR models, handles 99 languages effectively.
However, Whisper struggles with unseen languages, those not included in its pre-training.
We propose methods that exploit these relationships to enhance ASR performance on unseen languages.
arXiv Detail & Related papers (2024-12-21T04:05:43Z) - Towards Cross-Lingual Audio Abuse Detection in Low-Resource Settings with Few-Shot Learning [1.532756501930393]
We investigate the potential of pre-trained audio representations for detecting abusive language in low-resource languages.
Our approach integrates representations within the Model-Agnostic Meta-Learning framework to classify abusive language in 10 languages.
arXiv Detail & Related papers (2024-12-02T11:51:19Z) - Challenges in Adapting Multilingual LLMs to Low-Resource Languages using LoRA PEFT Tuning [0.4194295877935868]
This study investigates the effects of Low-Rank Adaptation (LoRA) -Efficient Fine-Tuning (PEFT) on multilingual Gemma models for Marathi.
Using a translated dataset with 52,000 instruction-response pairs, our findings reveal that while evaluation performance decline post-fine-tuning, manual assessments frequently suggest that the fine-tuned models outperform their original counterparts.
arXiv Detail & Related papers (2024-11-27T18:14:38Z) - Improving Multilingual ASR in the Wild Using Simple N-best Re-ranking [68.77659513993507]
We present a simple and effective N-best re-ranking approach to improve multilingual ASR accuracy.
Our results show spoken language identification accuracy improvements of 8.7% and 6.1%, respectively, and word error rates which are 3.3% and 2.0% lower on these benchmarks.
arXiv Detail & Related papers (2024-09-27T03:31:32Z) - Exploring the Impact of Data Quantity on ASR in Extremely Low-resource Languages [24.856817602140193]
This study focuses on two endangered Austronesian languages, Amis and Seediq.
We propose a novel data-selection scheme leveraging a multilingual corpus to augment the limited target language data.
arXiv Detail & Related papers (2024-09-13T14:35:47Z) - An Initial Investigation of Language Adaptation for TTS Systems under Low-resource Scenarios [76.11409260727459]
This paper explores the language adaptation capability of ZMM-TTS, a recent SSL-based multilingual TTS system.
We demonstrate that the similarity in phonetics between the pre-training and target languages, as well as the language category, affects the target language's adaptation performance.
arXiv Detail & Related papers (2024-06-13T08:16:52Z) - Quantifying the Dialect Gap and its Correlates Across Languages [69.18461982439031]
This work will lay the foundation for furthering the field of dialectal NLP by laying out evident disparities and identifying possible pathways for addressing them through mindful data collection.
arXiv Detail & Related papers (2023-10-23T17:42:01Z) - A Novel Self-training Approach for Low-resource Speech Recognition [15.612232220719653]
We propose a self-training approach for automatic speech recognition (ASR) for low-resource settings.
Our approach significantly improves word error rate, achieving a relative improvement of 14.94%.
Our proposed approach reports the best results on the Common Voice Punjabi dataset.
arXiv Detail & Related papers (2023-08-10T01:02:45Z) - Unsupervised Domain Adaptation of a Pretrained Cross-Lingual Language
Model [58.27176041092891]
Recent research indicates that pretraining cross-lingual language models on large-scale unlabeled texts yields significant performance improvements.
We propose a novel unsupervised feature decomposition method that can automatically extract domain-specific features from the entangled pretrained cross-lingual representations.
Our proposed model leverages mutual information estimation to decompose the representations computed by a cross-lingual model into domain-invariant and domain-specific parts.
arXiv Detail & Related papers (2020-11-23T16:00:42Z) - Building Low-Resource NER Models Using Non-Speaker Annotation [58.78968578460793]
Cross-lingual methods have had notable success in addressing these concerns.
We propose a complementary approach to building low-resource Named Entity Recognition (NER) models using non-speaker'' (NS) annotations.
We show that use of NS annotators produces results that are consistently on par or better than cross-lingual methods built on modern contextual representations.
arXiv Detail & Related papers (2020-06-17T03:24:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.