CMamba: Learned Image Compression with State Space Models
- URL: http://arxiv.org/abs/2502.04988v1
- Date: Fri, 07 Feb 2025 15:07:04 GMT
- Title: CMamba: Learned Image Compression with State Space Models
- Authors: Zhuojie Wu, Heming Du, Shuyun Wang, Ming Lu, Haiyang Sun, Yandong Guo, Xin Yu,
- Abstract summary: We propose a hybrid Convolution and State Space Models (SSMs) based image compression framework to achieve superior rate-distortion performance.
Specifically, CMamba introduces two key components: a Content-Adaptive SSM (CA-SSM) module and a Context-Aware Entropy (CAE) module.
Experimental results demonstrate that CMamba achieves superior rate-distortion performance.
- Score: 31.10785880342252
- License:
- Abstract: Learned Image Compression (LIC) has explored various architectures, such as Convolutional Neural Networks (CNNs) and transformers, in modeling image content distributions in order to achieve compression effectiveness. However, achieving high rate-distortion performance while maintaining low computational complexity (\ie, parameters, FLOPs, and latency) remains challenging. In this paper, we propose a hybrid Convolution and State Space Models (SSMs) based image compression framework, termed \textit{CMamba}, to achieve superior rate-distortion performance with low computational complexity. Specifically, CMamba introduces two key components: a Content-Adaptive SSM (CA-SSM) module and a Context-Aware Entropy (CAE) module. First, we observed that SSMs excel in modeling overall content but tend to lose high-frequency details. In contrast, CNNs are proficient at capturing local details. Motivated by this, we propose the CA-SSM module that can dynamically fuse global content extracted by SSM blocks and local details captured by CNN blocks in both encoding and decoding stages. As a result, important image content is well preserved during compression. Second, our proposed CAE module is designed to reduce spatial and channel redundancies in latent representations after encoding. Specifically, our CAE leverages SSMs to parameterize the spatial content in latent representations. Benefiting from SSMs, CAE significantly improves spatial compression efficiency while reducing spatial content redundancies. Moreover, along the channel dimension, CAE reduces inter-channel redundancies of latent representations via an autoregressive manner, which can fully exploit prior knowledge from previous channels without sacrificing efficiency. Experimental results demonstrate that CMamba achieves superior rate-distortion performance.
Related papers
- Cross-Scan Mamba with Masked Training for Robust Spectral Imaging [51.557804095896174]
We propose the Cross-Scanning Mamba, named CS-Mamba, that employs a Spatial-Spectral SSM for global-local balanced context encoding.
Experiment results show that our CS-Mamba achieves state-of-the-art performance and the masked training method can better reconstruct smooth features to improve the visual quality.
arXiv Detail & Related papers (2024-08-01T15:14:10Z) - Neural-based Video Compression on Solar Dynamics Observatory Images [8.73521037463594]
NASA's Solar Dynamics Observatory (SDO) mission collects extensive data to monitor the Sun's daily activity.
Data compression plays a crucial role in addressing the challenges posed by limited telemetry rates.
This paper introduces a neural video compression technique that achieves a high compression ratio for the SDO's image data collection.
arXiv Detail & Related papers (2024-07-12T21:24:25Z) - MambaVC: Learned Visual Compression with Selective State Spaces [74.29217829932895]
We introduce MambaVC, a simple, strong and efficient compression network based on SSM.
MambaVC develops a visual state space (VSS) block with a 2D selective scanning (2DSS) module as the nonlinear activation function after each downsampling.
On compression benchmark datasets, MambaVC achieves superior rate-distortion performance with lower computational and memory overheads.
arXiv Detail & Related papers (2024-05-24T10:24:30Z) - Efficient Visual State Space Model for Image Deblurring [83.57239834238035]
Convolutional neural networks (CNNs) and Vision Transformers (ViTs) have achieved excellent performance in image restoration.
We propose a simple yet effective visual state space model (EVSSM) for image deblurring.
arXiv Detail & Related papers (2024-05-23T09:13:36Z) - CU-Mamba: Selective State Space Models with Channel Learning for Image Restoration [7.292363114816646]
We introduce the Channel-Aware U-Shaped Mamba model, which incorporates a dual State Space Model framework into the U-Net architecture.
Experiments validate CU-Mamba's superiority over existing state-of-the-art methods.
arXiv Detail & Related papers (2024-04-17T22:02:22Z) - MISC: Ultra-low Bitrate Image Semantic Compression Driven by Large Multimodal Model [78.4051835615796]
This paper proposes a method called Multimodal Image Semantic Compression.
It consists of an LMM encoder for extracting the semantic information of the image, a map encoder to locate the region corresponding to the semantic, an image encoder generates an extremely compressed bitstream, and a decoder reconstructs the image based on the above information.
It can achieve optimal consistency and perception results while saving perceptual 50%, which has strong potential applications in the next generation of storage and communication.
arXiv Detail & Related papers (2024-02-26T17:11:11Z) - Exploring Effective Mask Sampling Modeling for Neural Image Compression [171.35596121939238]
Most existing neural image compression methods rely on side information from hyperprior or context models to eliminate spatial redundancy.
Inspired by the mask sampling modeling in recent self-supervised learning methods for natural language processing and high-level vision, we propose a novel pretraining strategy for neural image compression.
Our method achieves competitive performance with lower computational complexity compared to state-of-the-art image compression methods.
arXiv Detail & Related papers (2023-06-09T06:50:20Z) - Cross Modal Compression: Towards Human-comprehensible Semantic
Compression [73.89616626853913]
Cross modal compression is a semantic compression framework for visual data.
We show that our proposed CMC can achieve encouraging reconstructed results with an ultrahigh compression ratio.
arXiv Detail & Related papers (2022-09-06T15:31:11Z) - A Unified End-to-End Framework for Efficient Deep Image Compression [35.156677716140635]
We propose a unified framework called Efficient Deep Image Compression (EDIC) based on three new technologies.
Specifically, we design an auto-encoder style network for learning based image compression.
Our EDIC method can also be readily incorporated with the Deep Video Compression (DVC) framework to further improve the video compression performance.
arXiv Detail & Related papers (2020-02-09T14:21:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.