$O(\sqrt{T})$ Static Regret and Instance Dependent Constraint Violation for Constrained Online Convex Optimization
- URL: http://arxiv.org/abs/2502.05019v1
- Date: Fri, 07 Feb 2025 15:47:04 GMT
- Title: $O(\sqrt{T})$ Static Regret and Instance Dependent Constraint Violation for Constrained Online Convex Optimization
- Authors: Rahul Vaze, Abhishek Sinha,
- Abstract summary: The objective is to simultaneously minimize the static regret and cumulative constraint violation (CCV)
An algorithm is proposed that guarantees a static regret of $O(sqrtT)$ and a CCV of $mincV, O(sqrtTlog T) $, where $cV$ depends on the distance between the consecutively revealed constraint sets.
- Score: 16.99491218081617
- License:
- Abstract: The constrained version of the standard online convex optimization (OCO) framework, called COCO is considered, where on every round, a convex cost function and a convex constraint function are revealed to the learner after it chooses the action for that round. The objective is to simultaneously minimize the static regret and cumulative constraint violation (CCV). An algorithm is proposed that guarantees a static regret of $O(\sqrt{T})$ and a CCV of $\min\{\cV, O(\sqrt{T}\log T) \}$, where $\cV$ depends on the distance between the consecutively revealed constraint sets, the shape of constraint sets, dimension of action space and the diameter of the action space. For special cases of constraint sets, $\cV=O(1)$. Compared to the state of the art results, static regret of $O(\sqrt{T})$ and CCV of $O(\sqrt{T}\log T)$, that were universal, the new result on CCV is instance dependent, which is derived by exploiting the geometric properties of the constraint sets.
Related papers
- Constrained Online Convex Optimization with Polyak Feasibility Steps [3.928749790761187]
We study online convex optimization with a fixed constraint function $g : mathbbRd rightarrow mathbbR$.
We show a stronger guarantee of anytime constraint satisfaction $g(x_t) leq 0 forall in [T]$, and matching $O(sqrtT)$ regret guarantees.
arXiv Detail & Related papers (2025-02-18T18:26:20Z) - An Optimistic Algorithm for Online Convex Optimization with Adversarial Constraints [55.2480439325792]
We study Online Convex Optimization (OCO) with adversarial constraints.
We focus on a setting where the algorithm has access to predictions of the loss and constraint functions.
Our results show that we can improve the current best bounds of $ O(sqrtT) $ regret and $ tildeO(sqrtT) $ cumulative constraint violations.
arXiv Detail & Related papers (2024-12-11T03:06:42Z) - Tight Bounds for Online Convex Optimization with Adversarial Constraints [16.99491218081617]
In COCO, a convex cost function and a convex constraint function are revealed to the learner after the action for that round is chosen.
We show that an online policy can simultaneously achieve $O(sqrtT)$ regret and $tildeO(sqrtT)$ CCV without any restrictive assumptions.
arXiv Detail & Related papers (2024-05-15T12:37:03Z) - Optimal Algorithms for Online Convex Optimization with Adversarial Constraints [16.99491218081617]
In COCO, a convex cost function and a convex constraint function are revealed to the learner after it chooses the action for that round.
We show that an online policy can simultaneously achieve $O(sqrtT)$ regret and $tildeO(sqrtT)$ CCV without any restrictive assumptions.
arXiv Detail & Related papers (2023-10-29T09:55:41Z) - Improved Dynamic Regret for Online Frank-Wolfe [54.690867216880356]
We investigate the dynamic regret of online Frank-Wolfe (OFW), which is an efficient projection-free algorithm for online convex optimization.
In this paper, we derive improved dynamic regret bounds for OFW by extending the fast convergence rates of FW from offline optimization to online optimization.
arXiv Detail & Related papers (2023-02-11T07:19:51Z) - Towards Painless Policy Optimization for Constrained MDPs [46.12526917024248]
We study policy optimization in an infinite horizon, $gamma$-discounted constrained Markov decision process (CMDP)
Our objective is to return a policy that achieves large expected reward with a small constraint violation.
We propose a generic primal-dual framework that allows us to bound the reward sub-optimality and constraint violation for arbitrary algorithms.
arXiv Detail & Related papers (2022-04-11T15:08:09Z) - Regret and Cumulative Constraint Violation Analysis for Online Convex
Optimization with Long Term Constraints [24.97580261894342]
This paper considers online convex optimization with long term constraints, where constraints can be violated in intermediate rounds, but need to be satisfied in the long run.
A novel algorithm is first proposed and it achieves an $mathcalO(Tmaxc,1-c)$ bound for static regret and an $mathcalO(T(1-c)/2)$ bound for cumulative constraint violation.
arXiv Detail & Related papers (2021-06-09T15:18:06Z) - Online Convex Optimization with Continuous Switching Constraint [78.25064451417082]
We introduce the problem of online convex optimization with continuous switching constraint.
We show that, for strongly convex functions, the regret bound can be improved to $O(log T)$ for $S=Omega(log T)$, and $O(minT/exp(S)+S,T)$ for $S=O(log T)$.
arXiv Detail & Related papers (2021-03-21T11:43:35Z) - Optimal Regret Algorithm for Pseudo-1d Bandit Convex Optimization [51.23789922123412]
We study online learning with bandit feedback (i.e. learner has access to only zeroth-order oracle) where cost/reward functions admit a "pseudo-1d" structure.
We show a lower bound of $min(sqrtdT, T3/4)$ for the regret of any algorithm, where $T$ is the number of rounds.
We propose a new algorithm sbcalg that combines randomized online gradient descent with a kernelized exponential weights method to exploit the pseudo-1d structure effectively.
arXiv Detail & Related papers (2021-02-15T08:16:51Z) - Safe Learning under Uncertain Objectives and Constraints [66.05180398174286]
We consider non-textitunknown yet safety-critical optimization problems under textitunknown yet safety-critical constraints.
Such problems naturally arise in a variety of domains including robotics, manufacturing, and medical procedures.
A crucial component of our analysis is to introduce and apply a technique called shrinkage in the context of safe optimization.
arXiv Detail & Related papers (2020-06-23T20:51:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.