ApplE: An Applied Ethics Ontology with Event Context
- URL: http://arxiv.org/abs/2502.05110v1
- Date: Fri, 07 Feb 2025 17:34:50 GMT
- Title: ApplE: An Applied Ethics Ontology with Event Context
- Authors: Aisha Aijaz, Raghava Mutharaju, Manohar Kumar,
- Abstract summary: We propose ApplE, an Applied Ethics ontology that captures philosophical theory and event context to holistically describe the morality of an action.
The development process adheres to a modified version of the Agile methodology for Ontology Development (SAMOD) and utilizes standard design and publication practices.
- Score: 0.8056359341994941
- License:
- Abstract: Applied ethics is ubiquitous in most domains, requiring much deliberation due to its philosophical nature. Varying views often lead to conflicting courses of action where ethical dilemmas become challenging to resolve. Although many factors contribute to such a decision, the major driving forces can be discretized and thus simplified to provide an indicative answer. Knowledge representation and reasoning offer a way to explicitly translate abstract ethical concepts into applicable principles within the context of an event. To achieve this, we propose ApplE, an Applied Ethics ontology that captures philosophical theory and event context to holistically describe the morality of an action. The development process adheres to a modified version of the Simplified Agile Methodology for Ontology Development (SAMOD) and utilizes standard design and publication practices. Using ApplE, we model a use case from the bioethics domain that demonstrates our ontology's social and scientific value. Apart from the ontological reasoning and quality checks, ApplE is also evaluated using the three-fold testing process of SAMOD. ApplE follows FAIR principles and aims to be a viable resource for applied ethicists and ontology engineers.
Related papers
- LogiDynamics: Unraveling the Dynamics of Logical Inference in Large Language Model Reasoning [49.58786377307728]
This paper adopts an exploratory approach by introducing a controlled evaluation environment for analogical reasoning.
We analyze the comparative dynamics of inductive, abductive, and deductive inference pipelines.
We investigate advanced paradigms such as hypothesis selection, verification, and refinement, revealing their potential to scale up logical inference.
arXiv Detail & Related papers (2025-02-16T15:54:53Z) - Analyzing the Ethical Logic of Six Large Language Models [1.119697400073873]
This study examines the ethical reasoning of six prominent generative large language models: OpenAI GPT-4o, Meta LLaMA 3.1, Perplexity, Anthropic Claude 3.5 Sonnet, Google Gemini, and Mistral 7B.
Findings reveal that LLMs exhibit largely convergent ethical logic, marked by a rationalist, consequentialist emphasis, with decisions often prioritizing harm and fairness.
arXiv Detail & Related papers (2025-01-15T16:56:26Z) - Technology as uncharted territory: Contextual integrity and the notion of AI as new ethical ground [55.2480439325792]
I argue that efforts to promote responsible and ethical AI can inadvertently contribute to and seemingly legitimize this disregard for established contextual norms.
I question the current narrow prioritization in AI ethics of moral innovation over moral preservation.
arXiv Detail & Related papers (2024-12-06T15:36:13Z) - Quelle {é}thique pour quelle IA ? [0.0]
This study proposes an analysis of the different types of ethical approaches involved in the ethics of AI.
The author introduces to the contemporary need for and meaning of ethics, distinguishes it from other registers of normativities and underlines its inadequacy to formalization.
The study concludes with a reflection on the reasons why a human ethics of AI based on a pragmatic practice of contextual ethics remains necessary and irreducible to any formalization or automated treatment of the ethical questions that arise for humans.
arXiv Detail & Related papers (2024-05-21T08:13:02Z) - Values, Ethics, Morals? On the Use of Moral Concepts in NLP Research [13.28561989789828]
We provide an overview of some important ethical concepts stemming from philosophy.
We systematically survey the existing literature on moral NLP.
Our findings show that, for instance, most papers neither provide a clear definition of the terms they use nor adhere to definitions from philosophy.
arXiv Detail & Related papers (2023-10-21T06:04:10Z) - Rethinking Machine Ethics -- Can LLMs Perform Moral Reasoning through the Lens of Moral Theories? [78.3738172874685]
Making moral judgments is an essential step toward developing ethical AI systems.
Prevalent approaches are mostly implemented in a bottom-up manner, which uses a large set of annotated data to train models based on crowd-sourced opinions about morality.
This work proposes a flexible top-down framework to steer (Large) Language Models (LMs) to perform moral reasoning with well-established moral theories from interdisciplinary research.
arXiv Detail & Related papers (2023-08-29T15:57:32Z) - Introduction to ethics in the age of digital communication [1.922823221013346]
This article serves as an introduction to ethics in the field of digital communication.
It gives a brief overview of applied ethics as a practical sub-field of ethics.
The article also discusses the ways in which the nature of ethics in the field of communication has been changing, and the impact of emerging technology on these changes.
arXiv Detail & Related papers (2023-08-28T09:03:15Z) - AiSocrates: Towards Answering Ethical Quandary Questions [51.53350252548668]
AiSocrates is a system for deliberative exchange of different perspectives to an ethical quandary.
We show that AiSocrates generates promising answers to ethical quandary questions with multiple perspectives.
We argue that AiSocrates is a promising step toward developing an NLP system that incorporates human values explicitly by prompt instructions.
arXiv Detail & Related papers (2022-05-12T09:52:59Z) - An Ecosystem Approach to Ethical AI and Data Use: Experimental
Reflections [0.0]
This paper offers a methodology to identify the needs of AI practitioners when it comes to confronting and resolving ethical challenges.
We offer a grassroots approach to operational ethics based on dialog and mutualised responsibility.
arXiv Detail & Related papers (2020-12-27T07:41:26Z) - Case Study: Deontological Ethics in NLP [119.53038547411062]
We study one ethical theory, namely deontological ethics, from the perspective of NLP.
In particular, we focus on the generalization principle and the respect for autonomy through informed consent.
We provide four case studies to demonstrate how these principles can be used with NLP systems.
arXiv Detail & Related papers (2020-10-09T16:04:51Z) - Scruples: A Corpus of Community Ethical Judgments on 32,000 Real-Life
Anecdotes [72.64975113835018]
Motivated by descriptive ethics, we investigate a novel, data-driven approach to machine ethics.
We introduce Scruples, the first large-scale dataset with 625,000 ethical judgments over 32,000 real-life anecdotes.
Our dataset presents a major challenge to state-of-the-art neural language models, leaving significant room for improvement.
arXiv Detail & Related papers (2020-08-20T17:34:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.