LP-DETR: Layer-wise Progressive Relations for Object Detection
- URL: http://arxiv.org/abs/2502.05147v2
- Date: Tue, 11 Feb 2025 15:25:02 GMT
- Title: LP-DETR: Layer-wise Progressive Relations for Object Detection
- Authors: Zhengjian Kang, Ye Zhang, Xiaoyu Deng, Xintao Li, Yongzhe Zhang,
- Abstract summary: LP-DETR (Layer-wise Progressive DETR) is a novel approach that enhances DETR-based object detection through multi-scale relation modeling.
Our method introduces learnable spatial relationships between object queries through a relation-aware self-attention mechanism.
- Score: 4.632366780742503
- License:
- Abstract: This paper presents LP-DETR (Layer-wise Progressive DETR), a novel approach that enhances DETR-based object detection through multi-scale relation modeling. Our method introduces learnable spatial relationships between object queries through a relation-aware self-attention mechanism, which adaptively learns to balance different scales of relations (local, medium and global) across decoder layers. This progressive design enables the model to effectively capture evolving spatial dependencies throughout the detection pipeline. Extensive experiments on COCO 2017 dataset demonstrate that our method improves both convergence speed and detection accuracy compared to standard self-attention module. The proposed method achieves competitive results, reaching 52.3\% AP with 12 epochs and 52.5\% AP with 24 epochs using ResNet-50 backbone, and further improving to 58.0\% AP with Swin-L backbone. Furthermore, our analysis reveals an interesting pattern: the model naturally learns to prioritize local spatial relations in early decoder layers while gradually shifting attention to broader contexts in deeper layers, providing valuable insights for future research in object detection.
Related papers
- A Plug-and-Play Method for Rare Human-Object Interactions Detection by Bridging Domain Gap [50.079224604394]
We present a novel model-agnostic framework called textbfContext-textbfEnhanced textbfFeature textbfAment (CEFA)
CEFA consists of a feature alignment module and a context enhancement module.
Our method can serve as a plug-and-play module to improve the detection performance of HOI models on rare categories.
arXiv Detail & Related papers (2024-07-31T08:42:48Z) - Relation DETR: Exploring Explicit Position Relation Prior for Object Detection [26.03892270020559]
We present a scheme for enhancing the convergence and performance of DETR (DEtection TRansformer)
Our approach, termed Relation-DETR, introduces an encoder to construct position relation embeddings for progressive attention refinement.
Experiments on both generic and task-specific datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-07-16T13:17:07Z) - Context-Aware Aerial Object Detection: Leveraging Inter-Object and Background Relationships [10.416444779297148]
In most modern object detection pipelines, the detection proposals are processed independently given the feature map.
We propose a framework that leverages the strengths of Transformer-based models and Contrastive Language-Image Pre-training features.
Our approach achieves consistent improvements, setting new state-of-the-art results with increases of 1.37 mAP$_50$ on DOTA-v1.0, 5.30 mAP$_50$ on DOTA-v1.5, 2.30 mAP$_50$ on DOTA-v2.0 and 3.23 mAP$_50$ on DI
arXiv Detail & Related papers (2024-04-05T14:39:13Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Staged Depthwise Correlation and Feature Fusion for Siamese Object
Tracking [0.6827423171182154]
We propose a novel staged depthwise correlation and feature fusion network, named DCFFNet, to further optimize the feature extraction for visual tracking.
We build our deep tracker upon a siamese network architecture, which is offline trained from scratch on multiple large-scale datasets.
For comprehensive evaluations of performance, we implement our tracker on the popular benchmarks, including OTB100, VOT2018 and LaSOT.
arXiv Detail & Related papers (2023-10-15T06:04:42Z) - Spatio-Temporal Relation Learning for Video Anomaly Detection [35.59510027883497]
Anomaly identification is highly dependent on the relationship between the object and the scene.
In this paper, we propose a Spatial-Temporal Relation Learning framework to tackle the video anomaly detection task.
Experiments are conducted on three public datasets, and the superior performance over the state-of-the-art methods demonstrates the effectiveness of our method.
arXiv Detail & Related papers (2022-09-27T02:19:31Z) - Ret3D: Rethinking Object Relations for Efficient 3D Object Detection in
Driving Scenes [82.4186966781934]
We introduce a simple, efficient, and effective two-stage detector, termed as Ret3D.
At the core of Ret3D is the utilization of novel intra-frame and inter-frame relation modules.
With negligible extra overhead, Ret3D achieves the state-of-the-art performance.
arXiv Detail & Related papers (2022-08-18T03:48:58Z) - DepthFormer: Exploiting Long-Range Correlation and Local Information for
Accurate Monocular Depth Estimation [50.08080424613603]
Long-range correlation is essential for accurate monocular depth estimation.
We propose to leverage the Transformer to model this global context with an effective attention mechanism.
Our proposed model, termed DepthFormer, surpasses state-of-the-art monocular depth estimation methods with prominent margins.
arXiv Detail & Related papers (2022-03-27T05:03:56Z) - Recurrent Glimpse-based Decoder for Detection with Transformer [85.64521612986456]
We introduce a novel REcurrent Glimpse-based decOder (REGO) in this paper.
In particular, the REGO employs a multi-stage recurrent processing structure to help the attention of DETR gradually focus on foreground objects.
REGO consistently boosts the performance of different DETR detectors by up to 7% relative gain at the same setting of 50 training epochs.
arXiv Detail & Related papers (2021-12-09T00:29:19Z) - Scope Head for Accurate Localization in Object Detection [135.9979405835606]
We propose a novel detector coined as ScopeNet, which models anchors of each location as a mutually dependent relationship.
With our concise and effective design, the proposed ScopeNet achieves state-of-the-art results on COCO.
arXiv Detail & Related papers (2020-05-11T04:00:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.