Efficient distributional regression trees learning algorithms for calibrated non-parametric probabilistic forecasts
- URL: http://arxiv.org/abs/2502.05157v1
- Date: Fri, 07 Feb 2025 18:39:35 GMT
- Title: Efficient distributional regression trees learning algorithms for calibrated non-parametric probabilistic forecasts
- Authors: Duchemin Quentin, Obozinski Guillaume,
- Abstract summary: In the context of regression, instead of estimating a conditional mean, this can be achieved by producing a predictive interval for the output.
This paper introduces novel algorithms for learning probabilistic regression trees for the WIS or CRPS loss functions.
- Score: 0.0
- License:
- Abstract: The perspective of developing trustworthy AI for critical applications in science and engineering requires machine learning techniques that are capable of estimating their own uncertainty. In the context of regression, instead of estimating a conditional mean, this can be achieved by producing a predictive interval for the output, or to even learn a model of the conditional probability $p(y|x)$ of an output $y$ given input features $x$. While this can be done under parametric assumptions with, e.g. generalized linear model, these are typically too strong, and non-parametric models offer flexible alternatives. In particular, for scalar outputs, learning directly a model of the conditional cumulative distribution function of $y$ given $x$ can lead to more precise probabilistic estimates, and the use of proper scoring rules such as the weighted interval score (WIS) and the continuous ranked probability score (CRPS) lead to better coverage and calibration properties. This paper introduces novel algorithms for learning probabilistic regression trees for the WIS or CRPS loss functions. These algorithms are made computationally efficient thanks to an appropriate use of known data structures - namely min-max heaps, weight-balanced binary trees and Fenwick trees. Through numerical experiments, we demonstrate that the performance of our methods is competitive with alternative approaches. Additionally, our methods benefit from the inherent interpretability and explainability of trees. As a by-product, we show how our trees can be used in the context of conformal prediction and explain why they are particularly well-suited for achieving group-conditional coverage guarantees.
Related papers
- Probabilistic Scores of Classifiers, Calibration is not Enough [0.32985979395737786]
In binary classification tasks, accurate representation of probabilistic predictions is essential for various real-world applications.
In this study, we highlight approaches that prioritize the alignment between predicted scores and true probability distributions.
Our findings reveal limitations in traditional calibration metrics, which could undermine the reliability of predictive models for critical decision-making.
arXiv Detail & Related papers (2024-08-06T19:53:00Z) - Treeffuser: Probabilistic Predictions via Conditional Diffusions with Gradient-Boosted Trees [39.9546129327526]
Treeffuser is an easy-to-use method for probabilistic prediction on tabular data.
Treeffuser learns well-calibrated predictive distributions and can handle a wide range of regression tasks.
We demonstrate its versatility with an application to inventory allocation under uncertainty using sales data from Walmart.
arXiv Detail & Related papers (2024-06-11T18:59:24Z) - Online non-parametric likelihood-ratio estimation by Pearson-divergence
functional minimization [55.98760097296213]
We introduce a new framework for online non-parametric LRE (OLRE) for the setting where pairs of iid observations $(x_t sim p, x'_t sim q)$ are observed over time.
We provide theoretical guarantees for the performance of the OLRE method along with empirical validation in synthetic experiments.
arXiv Detail & Related papers (2023-11-03T13:20:11Z) - Cost-sensitive probabilistic predictions for support vector machines [1.743685428161914]
Support vector machines (SVMs) are widely used and constitute one of the best examined and used machine learning models.
We propose a novel approach to generate probabilistic outputs for the SVM.
arXiv Detail & Related papers (2023-10-09T11:00:17Z) - Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels [57.46832672991433]
We propose a novel equation discovery method based on Kernel learning and BAyesian Spike-and-Slab priors (KBASS)
We use kernel regression to estimate the target function, which is flexible, expressive, and more robust to data sparsity and noises.
We develop an expectation-propagation expectation-maximization algorithm for efficient posterior inference and function estimation.
arXiv Detail & Related papers (2023-10-09T03:55:09Z) - Distributional Gradient Boosting Machines [77.34726150561087]
Our framework is based on XGBoost and LightGBM.
We show that our framework achieves state-of-the-art forecast accuracy.
arXiv Detail & Related papers (2022-04-02T06:32:19Z) - Consistent Sufficient Explanations and Minimal Local Rules for
explaining regression and classification models [0.0]
We extend the notion of probabilistic Sufficient Explanations (P-SE)
The crux of P-SE is to compute the conditional probability of maintaining the same prediction.
We deal with non-binary features, without learning the distribution of $X$ nor having the model for making predictions.
arXiv Detail & Related papers (2021-11-08T17:27:52Z) - Learning to Estimate Without Bias [57.82628598276623]
Gauss theorem states that the weighted least squares estimator is a linear minimum variance unbiased estimation (MVUE) in linear models.
In this paper, we take a first step towards extending this result to non linear settings via deep learning with bias constraints.
A second motivation to BCE is in applications where multiple estimates of the same unknown are averaged for improved performance.
arXiv Detail & Related papers (2021-10-24T10:23:51Z) - Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic
Regression [51.770998056563094]
Probabilistic Gradient Boosting Machines (PGBM) is a method to create probabilistic predictions with a single ensemble of decision trees.
We empirically demonstrate the advantages of PGBM compared to existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-03T08:32:13Z) - Evaluating probabilistic classifiers: Reliability diagrams and score
decompositions revisited [68.8204255655161]
We introduce the CORP approach, which generates provably statistically Consistent, Optimally binned, and Reproducible reliability diagrams in an automated way.
Corpor is based on non-parametric isotonic regression and implemented via the Pool-adjacent-violators (PAV) algorithm.
arXiv Detail & Related papers (2020-08-07T08:22:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.