Physics-Driven Self-Supervised Deep Learning for Free-Surface Multiple Elimination
- URL: http://arxiv.org/abs/2502.05189v1
- Date: Sun, 26 Jan 2025 15:37:23 GMT
- Title: Physics-Driven Self-Supervised Deep Learning for Free-Surface Multiple Elimination
- Authors: Jing Sun, Tiexing Wang, Eric Verschuur, Ivan Vasconcelos,
- Abstract summary: In geophysics, deep learning (DL) methods are commonly based on supervised learning from large amounts of high-quality labelled data.
We propose a method in which the DL model learns to effectively parameterize the free-surface multiple-free wavefield from the full wavefield by incorporating the underlying physics into the loss computation.
This, in turn, yields high-quality estimates without ever being shown any ground truth data.
- Score: 3.3244277562036095
- License:
- Abstract: In recent years, deep learning (DL) has emerged as a promising alternative approach for various seismic processing tasks, including primary estimation (or multiple elimination), a crucial step for accurate subsurface imaging. In geophysics, DL methods are commonly based on supervised learning from large amounts of high-quality labelled data. Instead of relying on traditional supervised learning, in the context of free-surface multiple elimination, we propose a method in which the DL model learns to effectively parameterize the free-surface multiple-free wavefield from the full wavefield by incorporating the underlying physics into the loss computation. This, in turn, yields high-quality estimates without ever being shown any ground truth data. Currently, the network reparameterization is performed independently for each dataset. We demonstrate its effectiveness through tests on both synthetic and field data. We employ industry-standard Surface-Related Multiple Elimination (SRME) using, respectively, global least-squares adaptive subtraction and local least-squares adaptive subtraction as benchmarks. The comparison shows that the proposed method outperforms the benchmarks in estimation accuracy, achieving the most complete primary estimation and the least multiple energy leakage, but at the cost of a higher computational burden.
Related papers
- SeWA: Selective Weight Average via Probabilistic Masking [51.015724517293236]
We show that only a few points are needed to achieve better and faster convergence.
We transform the discrete selection problem into a continuous subset optimization framework.
We derive the SeWA's stability bounds, which are sharper than that under both convex image checkpoints.
arXiv Detail & Related papers (2025-02-14T12:35:21Z) - Physically Guided Deep Unsupervised Inversion for 1D Magnetotelluric Models [16.91835461818938]
This paper presents a new deep unsupervised inversion algorithm guided by physics to estimate 1D Magnetotelluric (MT) models.
Instead of using datasets with the observed data and their respective models as labels during training, our method employs a differentiable modeling operator that physically guides the cost function minimization.
arXiv Detail & Related papers (2024-10-20T04:17:59Z) - Reward-Augmented Data Enhances Direct Preference Alignment of LLMs [63.32585910975191]
We introduce reward-conditioned Large Language Models (LLMs) that learn from the entire spectrum of response quality within the dataset.
We propose an effective yet simple data relabeling method that conditions the preference pairs on quality scores to construct a reward-augmented dataset.
arXiv Detail & Related papers (2024-10-10T16:01:51Z) - FLOPS: Forward Learning with OPtimal Sampling [1.694989793927645]
gradient-based computation methods have recently gained focus for learning with only forward passes, also referred to as queries.
Conventional forward learning consumes enormous queries on each data point for accurate gradient estimation through Monte Carlo sampling.
We propose to allocate the optimal number of queries over each data in one batch during training to achieve a good balance between estimation accuracy and computational efficiency.
arXiv Detail & Related papers (2024-10-08T12:16:12Z) - Understanding Fine-tuning in Approximate Unlearning: A Theoretical Perspective [39.958103832214135]
Fine-tuning (FT) methods have become one of the fundamental approaches for approximating unlearning.
We present the first theoretical analysis of FT methods for machine unlearning within a linear regression framework.
We propose a novel Retention-Based Masking (RBM) strategy that constructs a weight saliency map based on the remaining dataset.
arXiv Detail & Related papers (2024-10-04T18:01:52Z) - Minimally Supervised Learning using Topological Projections in
Self-Organizing Maps [55.31182147885694]
We introduce a semi-supervised learning approach based on topological projections in self-organizing maps (SOMs)
Our proposed method first trains SOMs on unlabeled data and then a minimal number of available labeled data points are assigned to key best matching units (BMU)
Our results indicate that the proposed minimally supervised model significantly outperforms traditional regression techniques.
arXiv Detail & Related papers (2024-01-12T22:51:48Z) - Optimal Sample Selection Through Uncertainty Estimation and Its
Application in Deep Learning [22.410220040736235]
We present a theoretically optimal solution for addressing both coreset selection and active learning.
Our proposed method, COPS, is designed to minimize the expected loss of a model trained on subsampled data.
arXiv Detail & Related papers (2023-09-05T14:06:33Z) - Minimizing the Accumulated Trajectory Error to Improve Dataset
Distillation [151.70234052015948]
We propose a novel approach that encourages the optimization algorithm to seek a flat trajectory.
We show that the weights trained on synthetic data are robust against the accumulated errors perturbations with the regularization towards the flat trajectory.
Our method, called Flat Trajectory Distillation (FTD), is shown to boost the performance of gradient-matching methods by up to 4.7%.
arXiv Detail & Related papers (2022-11-20T15:49:11Z) - Attentional-Biased Stochastic Gradient Descent [74.49926199036481]
We present a provable method (named ABSGD) for addressing the data imbalance or label noise problem in deep learning.
Our method is a simple modification to momentum SGD where we assign an individual importance weight to each sample in the mini-batch.
ABSGD is flexible enough to combine with other robust losses without any additional cost.
arXiv Detail & Related papers (2020-12-13T03:41:52Z) - AutoSimulate: (Quickly) Learning Synthetic Data Generation [70.82315853981838]
We propose an efficient alternative for optimal synthetic data generation based on a novel differentiable approximation of the objective.
We demonstrate that the proposed method finds the optimal data distribution faster (up to $50times$), with significantly reduced training data generation (up to $30times$) and better accuracy ($+8.7%$) on real-world test datasets than previous methods.
arXiv Detail & Related papers (2020-08-16T11:36:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.