Adversarial Machine Learning: Attacking and Safeguarding Image Datasets
- URL: http://arxiv.org/abs/2502.05203v1
- Date: Fri, 31 Jan 2025 22:32:38 GMT
- Title: Adversarial Machine Learning: Attacking and Safeguarding Image Datasets
- Authors: Koushik Chowdhury,
- Abstract summary: This paper examines the vulnerabilities of convolutional neural networks (CNNs) to adversarial attacks and explores a method for their safeguarding.
CNNs were implemented on four of the most common image datasets and achieved high baseline accuracy.
It appears that while most level of robustness is achieved against the models after adversarial training, there are still a few losses in the performance of these models against adversarial perturbations.
- Score: 0.0
- License:
- Abstract: This paper examines the vulnerabilities of convolutional neural networks (CNNs) to adversarial attacks and explores a method for their safeguarding. In this study, CNNs were implemented on four of the most common image datasets, namely CIFAR-10, ImageNet, MNIST, and Fashion-MNIST, and achieved high baseline accuracy. To assess the strength of these models, the Fast Gradient Sign Method was used, which is a type of exploit on the model that is used to bring down the models accuracies by adding a very minimal perturbation to the input image. To counter the FGSM attack, a safeguarding approach went through, which includes retraining the models on clear and pollutant or adversarial images to increase their resistance ability. The next step involves applying FGSM again, but this time to the adversarially trained models, to see how much the accuracy of the models has gone down and evaluate the effectiveness of the defense. It appears that while most level of robustness is achieved against the models after adversarial training, there are still a few losses in the performance of these models against adversarial perturbations. This work emphasizes the need to create better defenses for models deployed in real-world scenarios against adversaries.
Related papers
- Protecting Feed-Forward Networks from Adversarial Attacks Using Predictive Coding [0.20718016474717196]
An adversarial example is a modified input image designed to cause a Machine Learning (ML) model to make a mistake.
This study presents a practical and effective solution -- using predictive coding networks (PCnets) as an auxiliary step for adversarial defence.
arXiv Detail & Related papers (2024-10-31T21:38:05Z) - A Hybrid Defense Strategy for Boosting Adversarial Robustness in Vision-Language Models [9.304845676825584]
We propose a novel adversarial training framework that integrates multiple attack strategies and advanced machine learning techniques.
Experiments conducted on real-world datasets, including CIFAR-10 and CIFAR-100, demonstrate that the proposed method significantly enhances model robustness.
arXiv Detail & Related papers (2024-10-18T23:47:46Z) - Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
Adrial robustness has been conventionally believed as a challenging property to encode for neural networks.
We develop a scalable and model-agnostic solution to achieve adversarial robustness without using any data.
arXiv Detail & Related papers (2024-07-26T10:49:14Z) - MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
We propose a novel, yet elegantly simple approach for detecting adversarial samples in Vision-Language Models.
Our method leverages Text-to-Image (T2I) models to generate images based on captions produced by target VLMs.
Empirical evaluations conducted on different datasets validate the efficacy of our approach.
arXiv Detail & Related papers (2024-06-13T15:55:04Z) - FACTUAL: A Novel Framework for Contrastive Learning Based Robust SAR Image Classification [10.911464455072391]
FACTUAL is a Contrastive Learning framework for Adversarial Training and robust SAR classification.
Our model achieves 99.7% accuracy on clean samples, and 89.6% on perturbed samples, both outperforming previous state-of-the-art methods.
arXiv Detail & Related papers (2024-04-04T06:20:22Z) - Isolation and Induction: Training Robust Deep Neural Networks against
Model Stealing Attacks [51.51023951695014]
Existing model stealing defenses add deceptive perturbations to the victim's posterior probabilities to mislead the attackers.
This paper proposes Isolation and Induction (InI), a novel and effective training framework for model stealing defenses.
In contrast to adding perturbations over model predictions that harm the benign accuracy, we train models to produce uninformative outputs against stealing queries.
arXiv Detail & Related papers (2023-08-02T05:54:01Z) - Beyond Pretrained Features: Noisy Image Modeling Provides Adversarial
Defense [52.66971714830943]
Masked image modeling (MIM) has made it a prevailing framework for self-supervised visual representation learning.
In this paper, we investigate how this powerful self-supervised learning paradigm can provide adversarial robustness to downstream classifiers.
We propose an adversarial defense method, referred to as De3, by exploiting the pretrained decoder for denoising.
arXiv Detail & Related papers (2023-02-02T12:37:24Z) - Threat Model-Agnostic Adversarial Defense using Diffusion Models [14.603209216642034]
Deep Neural Networks (DNNs) are highly sensitive to imperceptible malicious perturbations, known as adversarial attacks.
Deep Neural Networks (DNNs) are highly sensitive to imperceptible malicious perturbations, known as adversarial attacks.
arXiv Detail & Related papers (2022-07-17T06:50:48Z) - SafeAMC: Adversarial training for robust modulation recognition models [53.391095789289736]
In communication systems, there are many tasks, like modulation recognition, which rely on Deep Neural Networks (DNNs) models.
These models have been shown to be susceptible to adversarial perturbations, namely imperceptible additive noise crafted to induce misclassification.
We propose to use adversarial training, which consists of fine-tuning the model with adversarial perturbations, to increase the robustness of automatic modulation recognition models.
arXiv Detail & Related papers (2021-05-28T11:29:04Z) - Dual Manifold Adversarial Robustness: Defense against Lp and non-Lp
Adversarial Attacks [154.31827097264264]
Adversarial training is a popular defense strategy against attack threat models with bounded Lp norms.
We propose Dual Manifold Adversarial Training (DMAT) where adversarial perturbations in both latent and image spaces are used in robustifying the model.
Our DMAT improves performance on normal images, and achieves comparable robustness to the standard adversarial training against Lp attacks.
arXiv Detail & Related papers (2020-09-05T06:00:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.