Quantum Energy Teleportation: A Novel Protocol Relaxing Previous Constraints
- URL: http://arxiv.org/abs/2502.05288v1
- Date: Fri, 07 Feb 2025 19:45:23 GMT
- Title: Quantum Energy Teleportation: A Novel Protocol Relaxing Previous Constraints
- Authors: Songbo Xie, Manas Sajjan, Sabre Kais,
- Abstract summary: Quantum energy teleportation (QET) was introduced to facilitate the transfer of energy.
These constraints limit broader application of the QET protocol.
We propose a novel QET protocol that relaxes all these constraints, offering a more flexible and generalized framework.
- Score: 0.0
- License:
- Abstract: Quantum state teleportation (QST) is a foundational protocol for transferring quantum information across long distances. Building on this concept, quantum energy teleportation (QET) was introduced to facilitate the transfer of energy. However, QET has traditionally been thought to impose much stricter constraints than QST, including the need for the initial state to be the ground state of a specific interacting Hamiltonian, for Alice's measurement to commute with the interaction terms, and for the ground state to exhibit entanglement. These constraints limit broader application of the QET protocol. In this work, we challenge these notions and demonstrate for the first time that none of these constraints are fundamentally necessary. We propose a novel QET protocol that relaxes all these constraints, offering a more flexible and generalized framework. Additionally, we introduce the concept of a "local effective Hamiltonian," which removes the need for optimization techniques in determining Bob's optimal energy extraction. These advancements enhance our understanding of QET and extends its broader applications for quantum technologies. To support our findings, we implement the protocol on quantum hardware, confirming its theoretical validity and experimental feasibility.
Related papers
- Aspects of Quantum Energy Teleportation [0.0]
We explore quantum energy teleportation (QET) protocols, focusing on their behavior at finite temperatures and in excited states.
We analyze the role of entanglement as a resource for QET, particularly in thermal states, and compare the performance of QET across various initial states.
We then introduce a method to extract ground-state energy through a protocol that employs only quantum measurements, local operations, and classical communication (LOCC)
arXiv Detail & Related papers (2024-11-12T14:40:41Z) - Extracting and Storing Energy From a Quasi-Vacuum on a Quantum Computer [0.0]
We explore recent advancements in the understanding and manipulation of vacuum energy in quantum physics.
Traditional QET protocols extract energy from what we refer to as a quasi-vacuum'' state, but the extracted quantum energy is dissipated into classical devices.
We propose an enhanced QET protocol that incorporates an additional qubit, enabling the stored energy to be stored within a quantum register for future use.
arXiv Detail & Related papers (2024-09-06T01:48:33Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Quantum interactive proofs using quantum energy teleportation [0.0]
We present a simple quantum interactive proof protocol using the quantum state teleportation (QST) and quantum energy teleportation (QET) protocols.
QET works for any local Hamiltonian with entanglement and, for our study, it is important that getting the ground state of a generic local Hamiltonian is quantum Merlin Arthur (QMA)-hard.
arXiv Detail & Related papers (2023-06-14T05:03:53Z) - Scaling Limits of Quantum Repeater Networks [62.75241407271626]
Quantum networks (QNs) are a promising platform for secure communications, enhanced sensing, and efficient distributed quantum computing.
Due to the fragile nature of quantum states, these networks face significant challenges in terms of scalability.
In this paper, the scaling limits of quantum repeater networks (QRNs) are analyzed.
arXiv Detail & Related papers (2023-05-15T14:57:01Z) - Quantifying protocol efficiency: a thermodynamic figure of merit for
classical and quantum state-transfer protocols [0.0]
We focus on classical and quantum protocols transferring a state across a double-well potential.
The classical protocols are achieved by deforming the potential, while the quantum ones are assisted by a counter-diabatic driving.
We show that quantum protocols perform more quickly and accurately.
arXiv Detail & Related papers (2022-12-20T09:19:51Z) - Quantum Semantic Communications for Resource-Efficient Quantum Networking [52.3355619190963]
This letter proposes a novel quantum semantic communications (QSC) framework exploiting advancements in quantum machine learning and quantum semantic representations.
The proposed framework achieves approximately 50-75% reduction in quantum communication resources needed, while achieving a higher quantum semantic fidelity.
arXiv Detail & Related papers (2022-05-05T03:49:19Z) - A Quantum Optimal Control Problem with State Constrained Preserving
Coherence [68.8204255655161]
We consider a three-level $Lambda$-type atom subjected to Markovian decoherence characterized by non-unital decoherence channels.
We formulate the quantum optimal control problem with state constraints where the decoherence level remains within a pre-defined bound.
arXiv Detail & Related papers (2022-03-24T21:31:34Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Quantum teleportation is a reversal of quantum measurement [0.0]
We introduce a generalized concept of quantum teleportation in the framework of quantum measurement and reversing operation.
Our framework makes it possible to find an optimal protocol for quantum teleportation enabling a faithful transfer of unknown quantum states.
arXiv Detail & Related papers (2021-04-25T15:03:08Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.