Approximating the total variation distance between spin systems
- URL: http://arxiv.org/abs/2502.05437v1
- Date: Sat, 08 Feb 2025 03:58:55 GMT
- Title: Approximating the total variation distance between spin systems
- Authors: Weiming Feng, Hongyang Liu, Minji Yang,
- Abstract summary: We study the problem of approximating the total variation distance $d_TV(mu,nu)$ with an $epsilon$-relative error.
We propose a new reduction that connects the problem of approximating the TV-distance to sampling and approximate counting.
- Score: 2.5251712271700852
- License:
- Abstract: Spin systems form an important class of undirected graphical models. For two Gibbs distributions $\mu$ and $\nu$ induced by two spin systems on the same graph $G = (V, E)$, we study the problem of approximating the total variation distance $d_{TV}(\mu,\nu)$ with an $\epsilon$-relative error. We propose a new reduction that connects the problem of approximating the TV-distance to sampling and approximate counting. Our applications include the hardcore model and the antiferromagnetic Ising model in the uniqueness regime, the ferromagnetic Ising model, and the general Ising model satisfying the spectral condition. Additionally, we explore the computational complexity of approximating the total variation distance $d_{TV}(\mu_S,\nu_S)$ between two marginal distributions on an arbitrary subset $S \subseteq V$. We prove that this problem remains hard even when both $\mu$ and $\nu$ admit polynomial-time sampling and approximate counting algorithms.
Related papers
- Polynomial time sampling from log-smooth distributions in fixed dimension under semi-log-concavity of the forward diffusion with application to strongly dissipative distributions [9.48556659249574]
We provide a sampling algorithm with complexity in fixed dimension.
We prove that our algorithm achieves an expected $epsilon$ error in $KL$ divergence.
As an application, we derive an exponential complexity improvement for the problem of sampling from an $L$-log-smooth distribution.
arXiv Detail & Related papers (2024-12-31T17:51:39Z) - A mixing time bound for Gibbs sampling from log-smooth log-concave distributions [0.8702432681310401]
We study the behavior of the Gibbs sampler on the class of log-smooth and strongly log-concave target distributions.
We show that the Gibbs sampler requires at most $Ostarleft(kappa2 n7.5left(maxleft1,sqrtfrac1nlog frac2Mgammarightright2right)$ steps to produce a sample with error no more than $gamma$ in total variation distance from a distribution with condition number $kappa$.
arXiv Detail & Related papers (2024-12-23T19:00:02Z) - Dimension-free Private Mean Estimation for Anisotropic Distributions [55.86374912608193]
Previous private estimators on distributions over $mathRd suffer from a curse of dimensionality.
We present an algorithm whose sample complexity has improved dependence on dimension.
arXiv Detail & Related papers (2024-11-01T17:59:53Z) - Relative-Translation Invariant Wasserstein Distance [82.6068808353647]
We introduce a new family of distances, relative-translation invariant Wasserstein distances ($RW_p$)
We show that $RW_p distances are also real distance metrics defined on the quotient set $mathcalP_p(mathbbRn)/sim$ invariant to distribution translations.
arXiv Detail & Related papers (2024-09-04T03:41:44Z) - Beyond Moments: Robustly Learning Affine Transformations with
Asymptotically Optimal Error [8.615625517708324]
We present a-time algorithm for learning an unknown affine transformation of the standard hypercube from samples.
Our algorithm is based on a new method that iteratively improves an estimate of the unknown affine transformation whenever the requirements of the certificate are not met.
arXiv Detail & Related papers (2023-02-23T19:13:30Z) - Tight Bounds on the Hardness of Learning Simple Nonparametric Mixtures [9.053430799456587]
We study the problem of learning nonparametric distributions in a finite mixture.
We establish tight bounds on the sample complexity for learning the component distributions in such models.
arXiv Detail & Related papers (2022-03-28T23:53:48Z) - Wasserstein distance estimates for the distributions of numerical
approximations to ergodic stochastic differential equations [0.3553493344868413]
We study the Wasserstein distance between the in distribution of an ergodic differential equation and the distribution in the strongly log-concave case.
This allows us to study in a unified way a number of different approximations proposed in the literature for the overdamped and underdamped Langevin dynamics.
arXiv Detail & Related papers (2021-04-26T07:50:04Z) - Accelerated Gradient Tracking over Time-varying Graphs for Decentralized Optimization [59.65871549878937]
We prove that the practical single loop accelerated gradient tracking needs $O(fracgamma1-sigma_gamma)2sqrtfracLepsilon)$.
Our convergence rates improve significantly over the ones of $O(frac1epsilon5/7)$ and $O(fracLmu)5/7frac1 (1-sigma)1.5logfrac1epsilon)$.
arXiv Detail & Related papers (2021-04-06T15:34:14Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
We study the problem of high-dimensional robust linear regression where a learner is given access to $n$ samples from the generative model $Y = langle X,w* rangle + epsilon$
We propose estimators for this problem under two settings: (i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance and (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
arXiv Detail & Related papers (2020-07-16T06:44:44Z) - Sample Complexity of Asynchronous Q-Learning: Sharper Analysis and
Variance Reduction [63.41789556777387]
Asynchronous Q-learning aims to learn the optimal action-value function (or Q-function) of a Markov decision process (MDP)
We show that the number of samples needed to yield an entrywise $varepsilon$-accurate estimate of the Q-function is at most on the order of $frac1mu_min (1-gamma)5varepsilon2+ fract_mixmu_min (1-gamma)$ up to some logarithmic factor.
arXiv Detail & Related papers (2020-06-04T17:51:00Z) - Robustly Learning any Clusterable Mixture of Gaussians [55.41573600814391]
We study the efficient learnability of high-dimensional Gaussian mixtures in the adversarial-robust setting.
We provide an algorithm that learns the components of an $epsilon$-corrupted $k$-mixture within information theoretically near-optimal error proofs of $tildeO(epsilon)$.
Our main technical contribution is a new robust identifiability proof clusters from a Gaussian mixture, which can be captured by the constant-degree Sum of Squares proof system.
arXiv Detail & Related papers (2020-05-13T16:44:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.