Robustifying Fourier Features Embeddings for Implicit Neural Representations
- URL: http://arxiv.org/abs/2502.05482v1
- Date: Sat, 08 Feb 2025 07:43:37 GMT
- Title: Robustifying Fourier Features Embeddings for Implicit Neural Representations
- Authors: Mingze Ma, Qingtian Zhu, Yifan Zhan, Zhengwei Yin, Hongjun Wang, Yinqiang Zheng,
- Abstract summary: Implicit Neural Representations (INRs) employ neural networks to represent continuous functions by mapping coordinates to the corresponding values of the target function.
INRs face a challenge known as spectral bias when dealing with scenes containing varying frequencies.
We propose the use of multi-layer perceptrons (MLPs) without additive.
- Score: 25.725097757343367
- License:
- Abstract: Implicit Neural Representations (INRs) employ neural networks to represent continuous functions by mapping coordinates to the corresponding values of the target function, with applications e.g., inverse graphics. However, INRs face a challenge known as spectral bias when dealing with scenes containing varying frequencies. To overcome spectral bias, the most common approach is the Fourier features-based methods such as positional encoding. However, Fourier features-based methods will introduce noise to output, which degrades their performances when applied to downstream tasks. In response, this paper initially hypothesizes that combining multi-layer perceptrons (MLPs) with Fourier feature embeddings mutually enhances their strengths, yet simultaneously introduces limitations inherent in Fourier feature embeddings. By presenting a simple theorem, we validate our hypothesis, which serves as a foundation for the design of our solution. Leveraging these insights, we propose the use of multi-layer perceptrons (MLPs) without additive
Related papers
- Robust Fourier Neural Networks [1.0589208420411014]
We show that introducing a simple diagonal layer after the Fourier embedding layer makes the network more robust to measurement noise.
Under certain conditions, our proposed approach can also learn functions that are noisy mixtures of nonlinear functions of Fourier features.
arXiv Detail & Related papers (2024-09-03T16:56:41Z) - QFF: Quantized Fourier Features for Neural Field Representations [28.82293263445964]
We show that using Quantized Fourier Features (QFF) can result in smaller model size, faster training, and better quality outputs for several applications.
QFF are easy to code, fast to compute, and serve as a simple drop-in addition to many neural field representations.
arXiv Detail & Related papers (2022-12-02T00:11:22Z) - Incremental Spatial and Spectral Learning of Neural Operators for
Solving Large-Scale PDEs [86.35471039808023]
We introduce the Incremental Fourier Neural Operator (iFNO), which progressively increases the number of frequency modes used by the model.
We show that iFNO reduces total training time while maintaining or improving generalization performance across various datasets.
Our method demonstrates a 10% lower testing error, using 20% fewer frequency modes compared to the existing Fourier Neural Operator, while also achieving a 30% faster training.
arXiv Detail & Related papers (2022-11-28T09:57:15Z) - Deep Fourier Up-Sampling [100.59885545206744]
Up-sampling in the Fourier domain is more challenging as it does not follow such a local property.
We propose a theoretically sound Deep Fourier Up-Sampling (FourierUp) to solve these issues.
arXiv Detail & Related papers (2022-10-11T06:17:31Z) - PREF: Phasorial Embedding Fields for Compact Neural Representations [54.44527545923917]
We present a phasorial embedding field emphPREF as a compact representation to facilitate neural signal modeling and reconstruction tasks.
Our experiments show PREF-based neural signal processing technique is on par with the state-of-the-art in 2D image completion, 3D SDF surface regression, and 5D radiance field reconstruction.
arXiv Detail & Related papers (2022-05-26T17:43:03Z) - Seeing Implicit Neural Representations as Fourier Series [13.216389226310987]
Implicit Neural Representations (INR) use multilayer perceptrons to represent high-frequency functions in low-dimensional problem domains.
These representations achieved state-of-the-art results on tasks related to complex 3D objects and scenes.
This work analyzes the connection between the two methods and shows that a Fourier mapped perceptron is structurally like one hidden layer SIREN.
arXiv Detail & Related papers (2021-09-01T08:40:20Z) - Sigma-Delta and Distributed Noise-Shaping Quantization Methods for
Random Fourier Features [73.25551965751603]
We prove that our quantized RFFs allow a high accuracy approximation of the underlying kernels.
We show that the quantized RFFs can be further compressed, yielding an excellent trade-off between memory use and accuracy.
We empirically show by testing the performance of our methods on several machine learning tasks that our method compares favorably to other state of the art quantization methods in this context.
arXiv Detail & Related papers (2021-06-04T17:24:47Z) - Learning Set Functions that are Sparse in Non-Orthogonal Fourier Bases [73.53227696624306]
We present a new family of algorithms for learning Fourier-sparse set functions.
In contrast to other work that focused on the Walsh-Hadamard transform, our novel algorithms operate with recently introduced non-orthogonal Fourier transforms.
We demonstrate effectiveness on several real-world applications.
arXiv Detail & Related papers (2020-10-01T14:31:59Z) - Fourier Features Let Networks Learn High Frequency Functions in Low
Dimensional Domains [69.62456877209304]
We show that passing input points through a simple Fourier feature mapping enables a multilayer perceptron to learn high-frequency functions.
Results shed light on advances in computer vision and graphics that achieve state-of-the-art results.
arXiv Detail & Related papers (2020-06-18T17:59:11Z) - Fourier Neural Networks as Function Approximators and Differential
Equation Solvers [0.456877715768796]
The choice of activation and loss function yields results that replicate a Fourier series expansion closely.
We validate this FNN on naturally periodic smooth functions and on piecewise continuous periodic functions.
The main advantages of the current approach are the validity of the solution outside the training region, interpretability of the trained model, and simplicity of use.
arXiv Detail & Related papers (2020-05-27T00:30:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.