Do Spikes Protect Privacy? Investigating Black-Box Model Inversion Attacks in Spiking Neural Networks
- URL: http://arxiv.org/abs/2502.05509v1
- Date: Sat, 08 Feb 2025 10:02:27 GMT
- Title: Do Spikes Protect Privacy? Investigating Black-Box Model Inversion Attacks in Spiking Neural Networks
- Authors: Hamed Poursiami, Ayana Moshruba, Maryam Parsa,
- Abstract summary: This work presents the first study of black-box Model Inversion (MI) attacks on Spiking Neural Networks (SNNs)
We adapt a generative adversarial MI framework to the spiking domain by incorporating rate-based encoding for input transformation and decoding mechanisms for output interpretation.
Our results show that SNNs exhibit significantly greater resistance to MI attacks than ANNs, as demonstrated by degraded reconstructions, increased instability in attack convergence, and overall reduced attack effectiveness across multiple evaluation metrics.
- Score: 0.0
- License:
- Abstract: As machine learning models become integral to security-sensitive applications, concerns over data leakage from adversarial attacks continue to rise. Model Inversion (MI) attacks pose a significant privacy threat by enabling adversaries to reconstruct training data from model outputs. While MI attacks on Artificial Neural Networks (ANNs) have been widely studied, Spiking Neural Networks (SNNs) remain largely unexplored in this context. Due to their event-driven and discrete computations, SNNs introduce fundamental differences in information processing that may offer inherent resistance to such attacks. A critical yet underexplored aspect of this threat lies in black-box settings, where attackers operate through queries without direct access to model parameters or gradients-representing a more realistic adversarial scenario in deployed systems. This work presents the first study of black-box MI attacks on SNNs. We adapt a generative adversarial MI framework to the spiking domain by incorporating rate-based encoding for input transformation and decoding mechanisms for output interpretation. Our results show that SNNs exhibit significantly greater resistance to MI attacks than ANNs, as demonstrated by degraded reconstructions, increased instability in attack convergence, and overall reduced attack effectiveness across multiple evaluation metrics. Further analysis suggests that the discrete and temporally distributed nature of SNN decision boundaries disrupts surrogate modeling, limiting the attacker's ability to approximate the target model.
Related papers
- Problem space structural adversarial attacks for Network Intrusion Detection Systems based on Graph Neural Networks [8.629862888374243]
We propose the first formalization of adversarial attacks specifically tailored for GNN in network intrusion detection.
We outline and model the problem space constraints that attackers need to consider to carry out feasible structural attacks in real-world scenarios.
Our findings demonstrate the increased robustness of the models against classical feature-based adversarial attacks.
arXiv Detail & Related papers (2024-03-18T14:40:33Z) - Securing Graph Neural Networks in MLaaS: A Comprehensive Realization of Query-based Integrity Verification [68.86863899919358]
We introduce a groundbreaking approach to protect GNN models in Machine Learning from model-centric attacks.
Our approach includes a comprehensive verification schema for GNN's integrity, taking into account both transductive and inductive GNNs.
We propose a query-based verification technique, fortified with innovative node fingerprint generation algorithms.
arXiv Detail & Related papers (2023-12-13T03:17:05Z) - Not So Robust After All: Evaluating the Robustness of Deep Neural
Networks to Unseen Adversarial Attacks [5.024667090792856]
Deep neural networks (DNNs) have gained prominence in various applications, such as classification, recognition, and prediction.
A fundamental attribute of traditional DNNs is their vulnerability to modifications in input data, which has resulted in the investigation of adversarial attacks.
This study aims to challenge the efficacy and generalization of contemporary defense mechanisms against adversarial attacks.
arXiv Detail & Related papers (2023-08-12T05:21:34Z) - Adversarial Evasion Attacks Practicality in Networks: Testing the Impact of Dynamic Learning [1.6574413179773757]
adversarial attacks aim to trick ML models into producing faulty predictions.
adversarial attacks can compromise ML-based NIDSs.
Our experiments indicate that continuous re-training, even without adversarial training, can reduce the effectiveness of adversarial attacks.
arXiv Detail & Related papers (2023-06-08T18:32:08Z) - On the Robustness of Bayesian Neural Networks to Adversarial Attacks [11.277163381331137]
Vulnerability to adversarial attacks is one of the principal hurdles to the adoption of deep learning in safety-critical applications.
We show that vulnerability to gradient-based attacks arises as a result of degeneracy in the data distribution.
We prove that the expected gradient of the loss with respect to the BNN posterior distribution is vanishing, even when each neural network sampled from the posterior is vulnerable to gradient-based attacks.
arXiv Detail & Related papers (2022-07-13T12:27:38Z) - Latent Boundary-guided Adversarial Training [61.43040235982727]
Adrial training is proved to be the most effective strategy that injects adversarial examples into model training.
We propose a novel adversarial training framework called LAtent bounDary-guided aDvErsarial tRaining.
arXiv Detail & Related papers (2022-06-08T07:40:55Z) - Learning from Attacks: Attacking Variational Autoencoder for Improving
Image Classification [17.881134865491063]
Adversarial attacks are often considered as threats to the robustness of Deep Neural Networks (DNNs)
This work analyzes adversarial attacks from a different perspective. Namely, adversarial examples contain implicit information that is useful to the predictions.
We propose an algorithmic framework that leverages the advantages of the DNNs for data self-expression and task-specific predictions.
arXiv Detail & Related papers (2022-03-11T08:48:26Z) - Adversarial Attacks on Deep Learning Based Power Allocation in a Massive
MIMO Network [62.77129284830945]
We show that adversarial attacks can break DL-based power allocation in the downlink of a massive multiple-input-multiple-output (maMIMO) network.
We benchmark the performance of these attacks and show that with a small perturbation in the input of the neural network (NN), the white-box attacks can result in infeasible solutions up to 86%.
arXiv Detail & Related papers (2021-01-28T16:18:19Z) - Measurement-driven Security Analysis of Imperceptible Impersonation
Attacks [54.727945432381716]
We study the exploitability of Deep Neural Network-based Face Recognition systems.
We show that factors such as skin color, gender, and age, impact the ability to carry out an attack on a specific target victim.
We also study the feasibility of constructing universal attacks that are robust to different poses or views of the attacker's face.
arXiv Detail & Related papers (2020-08-26T19:27:27Z) - Graph Backdoor [53.70971502299977]
We present GTA, the first backdoor attack on graph neural networks (GNNs)
GTA departs in significant ways: it defines triggers as specific subgraphs, including both topological structures and descriptive features.
It can be instantiated for both transductive (e.g., node classification) and inductive (e.g., graph classification) tasks.
arXiv Detail & Related papers (2020-06-21T19:45:30Z) - Boosting Black-Box Attack with Partially Transferred Conditional
Adversarial Distribution [83.02632136860976]
We study black-box adversarial attacks against deep neural networks (DNNs)
We develop a novel mechanism of adversarial transferability, which is robust to the surrogate biases.
Experiments on benchmark datasets and attacking against real-world API demonstrate the superior attack performance of the proposed method.
arXiv Detail & Related papers (2020-06-15T16:45:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.