Evaluating Vision-Language Models for Emotion Recognition
- URL: http://arxiv.org/abs/2502.05660v1
- Date: Sat, 08 Feb 2025 18:25:31 GMT
- Title: Evaluating Vision-Language Models for Emotion Recognition
- Authors: Sree Bhattacharyya, James Z. Wang,
- Abstract summary: We present the first comprehensive evaluation of Large Vision-Language Models (VLMs) for recognizing evoked emotions from images.<n>Through several experiments, we demonstrate important factors that emotion recognition performance depends on, and also characterize the various errors made by VLMs in the process.
- Score: 1.7409710986849658
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Vision-Language Models (VLMs) have achieved unprecedented success in several objective multimodal reasoning tasks. However, to further enhance their capabilities of empathetic and effective communication with humans, improving how VLMs process and understand emotions is crucial. Despite significant research attention on improving affective understanding, there is a lack of detailed evaluations of VLMs for emotion-related tasks, which can potentially help inform downstream fine-tuning efforts. In this work, we present the first comprehensive evaluation of VLMs for recognizing evoked emotions from images. We create a benchmark for the task of evoked emotion recognition and study the performance of VLMs for this task, from perspectives of correctness and robustness. Through several experiments, we demonstrate important factors that emotion recognition performance depends on, and also characterize the various errors made by VLMs in the process. Finally, we pinpoint potential causes for errors through a human evaluation study. We use our experimental results to inform recommendations for the future of emotion research in the context of VLMs.
Related papers
- Benchmarking Large Vision-Language Models on Fine-Grained Image Tasks: A Comprehensive Evaluation [53.84282335629258]
We introduce a comprehensive fine-grained evaluation benchmark, i.e., FG-BMK, comprising 3.49 million questions and 3.32 million images.
Our evaluation systematically examines LVLMs from both human-oriented and machine-oriented perspectives.
We uncover key findings regarding the influence of training paradigms, modality alignment, perturbation susceptibility, and fine-grained category reasoning on task performance.
arXiv Detail & Related papers (2025-04-21T09:30:41Z) - VisFactor: Benchmarking Fundamental Visual Cognition in Multimodal Large Language Models [62.667142971664575]
We introduce VisFactor, a novel benchmark derived from the Factor-Referenced Cognitive Test (FRCT)
VisFactor digitalizes vision-related FRCT subtests to systematically evaluate MLLMs across essential visual cognitive tasks.
We present a comprehensive evaluation of state-of-the-art MLLMs, such as GPT-4o, Gemini-Pro, and Qwen-VL.
arXiv Detail & Related papers (2025-02-23T04:21:32Z) - On the robustness of multimodal language model towards distractions [16.144509808157643]
This paper aims to assess the robustness of vision-language models (VLMs) against both visual and textual distractions in the context of science question answering.
Our findings reveal that most-of-the-art VLMs, including GPT-4, are vulnerable to various types of distractions, experiencing noticeable degradation in reasoning capabilities when confronted with distractions.
arXiv Detail & Related papers (2025-02-13T23:29:01Z) - Boosting Self-Efficacy and Performance of Large Language Models via Verbal Efficacy Stimulations [10.209999691197948]
This paper introduces Verbal Efficacy Stimulations (VES)<n>VES comprises three types of verbal prompts: encouraging, provocative, and critical, addressing six aspects such as helpfulness and competence.<n>The experimental results show that the three types of VES improve the performance of LLMs on most tasks, and the most effective VES varies for different models.
arXiv Detail & Related papers (2025-02-10T16:54:03Z) - AER-LLM: Ambiguity-aware Emotion Recognition Leveraging Large Language Models [18.482881562645264]
This study is the first to explore the potential of Large Language Models (LLMs) in recognizing ambiguous emotions.
We design zero-shot and few-shot prompting and incorporate past dialogue as context information for ambiguous emotion recognition.
arXiv Detail & Related papers (2024-09-26T23:25:21Z) - Do Large Language Models Possess Sensitive to Sentiment? [18.88126980975737]
Large Language Models (LLMs) have recently displayed their extraordinary capabilities in language understanding.
This paper investigates the ability of LLMs to detect and react to sentiment in text modal.
arXiv Detail & Related papers (2024-09-04T01:40:20Z) - EmoLLM: Multimodal Emotional Understanding Meets Large Language Models [61.179731667080326]
Multi-modal large language models (MLLMs) have achieved remarkable performance on objective multimodal perception tasks.
But their ability to interpret subjective, emotionally nuanced multimodal content remains largely unexplored.
EmoLLM is a novel model for multimodal emotional understanding, incorporating with two core techniques.
arXiv Detail & Related papers (2024-06-24T08:33:02Z) - GPT as Psychologist? Preliminary Evaluations for GPT-4V on Visual Affective Computing [74.68232970965595]
Multimodal large language models (MLLMs) are designed to process and integrate information from multiple sources, such as text, speech, images, and videos.
This paper assesses the application of MLLMs with 5 crucial abilities for affective computing, spanning from visual affective tasks and reasoning tasks.
arXiv Detail & Related papers (2024-03-09T13:56:25Z) - Enhancing Emotional Generation Capability of Large Language Models via Emotional Chain-of-Thought [50.13429055093534]
Large Language Models (LLMs) have shown remarkable performance in various emotion recognition tasks.
We propose the Emotional Chain-of-Thought (ECoT) to enhance the performance of LLMs on various emotional generation tasks.
arXiv Detail & Related papers (2024-01-12T16:42:10Z) - Large Language Models Understand and Can be Enhanced by Emotional
Stimuli [53.53886609012119]
We take the first step towards exploring the ability of Large Language Models to understand emotional stimuli.
Our experiments show that LLMs have a grasp of emotional intelligence, and their performance can be improved with emotional prompts.
Our human study results demonstrate that EmotionPrompt significantly boosts the performance of generative tasks.
arXiv Detail & Related papers (2023-07-14T00:57:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.