On the Convergence and Stability of Upside-Down Reinforcement Learning, Goal-Conditioned Supervised Learning, and Online Decision Transformers
- URL: http://arxiv.org/abs/2502.05672v1
- Date: Sat, 08 Feb 2025 19:26:22 GMT
- Title: On the Convergence and Stability of Upside-Down Reinforcement Learning, Goal-Conditioned Supervised Learning, and Online Decision Transformers
- Authors: Miroslav Štrupl, Oleg Szehr, Francesco Faccio, Dylan R. Ashley, Rupesh Kumar Srivastava, Jürgen Schmidhuber,
- Abstract summary: This article provides a rigorous analysis of convergence and stability of Episodic Upside-Down Reinforcement Learning, Goal-Conditioned Supervised Learning and Online Decision Transformers.
- Score: 25.880499561355904
- License:
- Abstract: This article provides a rigorous analysis of convergence and stability of Episodic Upside-Down Reinforcement Learning, Goal-Conditioned Supervised Learning and Online Decision Transformers. These algorithms performed competitively across various benchmarks, from games to robotic tasks, but their theoretical understanding is limited to specific environmental conditions. This work initiates a theoretical foundation for algorithms that build on the broad paradigm of approaching reinforcement learning through supervised learning or sequence modeling. At the core of this investigation lies the analysis of conditions on the underlying environment, under which the algorithms can identify optimal solutions. We also assess whether emerging solutions remain stable in situations where the environment is subject to tiny levels of noise. Specifically, we study the continuity and asymptotic convergence of command-conditioned policies, values and the goal-reaching objective depending on the transition kernel of the underlying Markov Decision Process. We demonstrate that near-optimal behavior is achieved if the transition kernel is located in a sufficiently small neighborhood of a deterministic kernel. The mentioned quantities are continuous (with respect to a specific topology) at deterministic kernels, both asymptotically and after a finite number of learning cycles. The developed methods allow us to present the first explicit estimates on the convergence and stability of policies and values in terms of the underlying transition kernels. On the theoretical side we introduce a number of new concepts to reinforcement learning, like working in segment spaces, studying continuity in quotient topologies and the application of the fixed-point theory of dynamical systems. The theoretical study is accompanied by a detailed investigation of example environments and numerical experiments.
Related papers
- Rich-Observation Reinforcement Learning with Continuous Latent Dynamics [43.84391209459658]
We introduce a new theoretical framework, RichCLD (Rich-Observation RL with Continuous Latent Dynamics), in which the agent performs control based on high-dimensional observations.
Our main contribution is a new algorithm for this setting that is provably statistically and computationally efficient.
arXiv Detail & Related papers (2024-05-29T17:02:49Z) - Learning Optimal Deterministic Policies with Stochastic Policy Gradients [62.81324245896716]
Policy gradient (PG) methods are successful approaches to deal with continuous reinforcement learning (RL) problems.
In common practice, convergence (hyper)policies are learned only to deploy their deterministic version.
We show how to tune the exploration level used for learning to optimize the trade-off between the sample complexity and the performance of the deployed deterministic policy.
arXiv Detail & Related papers (2024-05-03T16:45:15Z) - Q-Learning for Stochastic Control under General Information Structures
and Non-Markovian Environments [1.90365714903665]
We present a convergence theorem for iterations, and iterate in particular, Q-learnings under a general, possibly non-Markovian, environment.
We discuss the implications and applications of this theorem to a variety of control problems with non-Markovian environments.
arXiv Detail & Related papers (2023-10-31T19:53:16Z) - Probabilistic Reach-Avoid for Bayesian Neural Networks [71.67052234622781]
We show that an optimal synthesis algorithm can provide more than a four-fold increase in the number of certifiable states.
The algorithm is able to provide more than a three-fold increase in the average guaranteed reach-avoid probability.
arXiv Detail & Related papers (2023-10-03T10:52:21Z) - Conditional Kernel Imitation Learning for Continuous State Environments [9.750698192309978]
We introduce a novel conditional kernel density estimation-based imitation learning framework.
We show consistently superior empirical performance over many state-of-the-art IL algorithms.
arXiv Detail & Related papers (2023-08-24T05:26:42Z) - Can Decentralized Stochastic Minimax Optimization Algorithms Converge
Linearly for Finite-Sum Nonconvex-Nonconcave Problems? [56.62372517641597]
Decentralized minimax optimization has been actively studied in the past few years due to its application in a wide range machine learning.
This paper develops two novel decentralized minimax optimization algorithms for the non-strongly-nonconcave problem.
arXiv Detail & Related papers (2023-04-24T02:19:39Z) - Performative Reinforcement Learning [8.07595093287034]
We introduce the concept of performatively stable policy.
We show that repeatedly optimizing this objective converges to a performatively stable policy.
arXiv Detail & Related papers (2022-06-30T18:26:03Z) - Towards Robust Bisimulation Metric Learning [3.42658286826597]
Bisimulation metrics offer one solution to representation learning problem.
We generalize value function approximation bounds for on-policy bisimulation metrics to non-optimal policies.
We find that these issues stem from an underconstrained dynamics model and an unstable dependence of the embedding norm on the reward signal.
arXiv Detail & Related papers (2021-10-27T00:32:07Z) - Policy Gradient for Continuing Tasks in Non-stationary Markov Decision
Processes [112.38662246621969]
Reinforcement learning considers the problem of finding policies that maximize an expected cumulative reward in a Markov decision process with unknown transition probabilities.
We compute unbiased navigation gradients of the value function which we use as ascent directions to update the policy.
A major drawback of policy gradient-type algorithms is that they are limited to episodic tasks unless stationarity assumptions are imposed.
arXiv Detail & Related papers (2020-10-16T15:15:42Z) - A Distributional Analysis of Sampling-Based Reinforcement Learning
Algorithms [67.67377846416106]
We present a distributional approach to theoretical analyses of reinforcement learning algorithms for constant step-sizes.
We show that value-based methods such as TD($lambda$) and $Q$-Learning have update rules which are contractive in the space of distributions of functions.
arXiv Detail & Related papers (2020-03-27T05:13:29Z) - Optimization with Momentum: Dynamical, Control-Theoretic, and Symplectic
Perspectives [97.16266088683061]
The article rigorously establishes why symplectic discretization schemes are important for momentum-based optimization algorithms.
It provides a characterization of algorithms that exhibit accelerated convergence.
arXiv Detail & Related papers (2020-02-28T00:32:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.