Linear Attention Modeling for Learned Image Compression
- URL: http://arxiv.org/abs/2502.05741v2
- Date: Sat, 22 Mar 2025 17:16:31 GMT
- Title: Linear Attention Modeling for Learned Image Compression
- Authors: Donghui Feng, Zhengxue Cheng, Shen Wang, Ronghua Wu, Hongwei Hu, Guo Lu, Li Song,
- Abstract summary: Experimental results demonstrate that our method achieves competitive RD performances by outperforming VTM-9.1 by -15.26%, -15.41%, -17.63% in BD-rate on Kodak, CLIC and Tecnick datasets.
- Score: 20.691429578976763
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent years, learned image compression has made tremendous progress to achieve impressive coding efficiency. Its coding gain mainly comes from non-linear neural network-based transform and learnable entropy modeling. However, most studies focus on a strong backbone, and few studies consider a low complexity design. In this paper, we propose LALIC, a linear attention modeling for learned image compression. Specially, we propose to use Bi-RWKV blocks, by utilizing the Spatial Mix and Channel Mix modules to achieve more compact feature extraction, and apply the Conv based Omni-Shift module to adapt to two-dimensional latent representation. Furthermore, we propose a RWKV-based Spatial-Channel ConTeXt model (RWKV-SCCTX), that leverages the Bi-RWKV to modeling the correlation between neighboring features effectively. To our knowledge, our work is the first work to utilize efficient Bi-RWKV models with linear attention for learned image compression. Experimental results demonstrate that our method achieves competitive RD performances by outperforming VTM-9.1 by -15.26%, -15.41%, -17.63% in BD-rate on Kodak, CLIC and Tecnick datasets. The code is available at https://github.com/sjtu-medialab/RwkvCompress .
Related papers
- Multi-Scale Invertible Neural Network for Wide-Range Variable-Rate Learned Image Compression [90.59962443790593]
In this paper, we present a variable-rate image compression model based on invertible transform to overcome limitations.
Specifically, we design a lightweight multi-scale invertible neural network, which maps the input image into multi-scale latent representations.
Experimental results demonstrate that the proposed method achieves state-of-the-art performance compared to existing variable-rate methods.
arXiv Detail & Related papers (2025-03-27T09:08:39Z) - Exploring Real&Synthetic Dataset and Linear Attention in Image Restoration [47.26304397935705]
Image restoration aims to recover high-quality images from degraded inputs.<n>Existing methods lack a unified training benchmark for iterations and configurations.<n>We introduce a large-scale IR dataset called ReSyn, which employs a novel image filtering method based on image complexity.
arXiv Detail & Related papers (2024-12-05T02:11:51Z) - HAT: Hybrid Attention Transformer for Image Restoration [61.74223315807691]
Transformer-based methods have shown impressive performance in image restoration tasks, such as image super-resolution and denoising.
We propose a new Hybrid Attention Transformer (HAT) to activate more input pixels for better restoration.
Our HAT achieves state-of-the-art performance both quantitatively and qualitatively.
arXiv Detail & Related papers (2023-09-11T05:17:55Z) - Efficient Contextformer: Spatio-Channel Window Attention for Fast
Context Modeling in Learned Image Compression [1.9249287163937978]
We introduce the Efficient Contextformer (eContextformer) - a transformer-based autoregressive context model for learned image.
It fuses patch-wise, checkered, and channel-wise grouping techniques for parallel context modeling.
It achieves 145x lower model complexity and 210Cx faster decoding speed, and higher average bit savings on Kodak, CLI, and Tecnick datasets.
arXiv Detail & Related papers (2023-06-25T16:29:51Z) - Learned Image Compression with Mixed Transformer-CNN Architectures [21.53261818914534]
We propose an efficient parallel Transformer-CNN Mixture (TCM) block with a controllable complexity.
Inspired by the recent progress of entropy estimation models and attention modules, we propose a channel-wise entropy model with parameter-efficient swin-transformer-based attention.
Experimental results demonstrate our proposed method achieves state-of-the-art rate-distortion performances.
arXiv Detail & Related papers (2023-03-27T08:19:01Z) - The Devil Is in the Details: Window-based Attention for Image
Compression [58.1577742463617]
Most existing learned image compression models are based on Convolutional Neural Networks (CNNs)
In this paper, we study the effects of multiple kinds of attention mechanisms for local features learning, then introduce a more straightforward yet effective window-based local attention block.
The proposed window-based attention is very flexible which could work as a plug-and-play component to enhance CNN and Transformer models.
arXiv Detail & Related papers (2022-03-16T07:55:49Z) - Neural Data-Dependent Transform for Learned Image Compression [72.86505042102155]
We build a neural data-dependent transform and introduce a continuous online mode decision mechanism to jointly optimize the coding efficiency for each individual image.
The experimental results show the effectiveness of the proposed neural-syntax design and the continuous online mode decision mechanism.
arXiv Detail & Related papers (2022-03-09T14:56:48Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Implicit Neural Representations (INRs) have gained attention as a novel and effective representation for various data types.
We propose the first comprehensive compression pipeline based on INRs including quantization, quantization-aware retraining and entropy coding.
We find that our approach to source compression with INRs vastly outperforms similar prior work.
arXiv Detail & Related papers (2021-12-08T13:02:53Z) - Enhanced Invertible Encoding for Learned Image Compression [40.21904131503064]
In this paper, we propose an enhanced Invertible.
Network with invertible neural networks (INNs) to largely mitigate the information loss problem for better compression.
Experimental results on the Kodak, CLIC, and Tecnick datasets show that our method outperforms the existing learned image compression methods.
arXiv Detail & Related papers (2021-08-08T17:32:10Z) - OSLO: On-the-Sphere Learning for Omnidirectional images and its
application to 360-degree image compression [59.58879331876508]
We study the learning of representation models for omnidirectional images and propose to use the properties of HEALPix uniform sampling of the sphere to redefine the mathematical tools used in deep learning models for omnidirectional images.
Our proposed on-the-sphere solution leads to a better compression gain that can save 13.7% of the bit rate compared to similar learned models applied to equirectangular images.
arXiv Detail & Related papers (2021-07-19T22:14:30Z) - Learned Image Compression with Gaussian-Laplacian-Logistic Mixture Model
and Concatenated Residual Modules [22.818632387206257]
Two key components of learned image compression are the entropy model of the latent representations and the encoding/decoding network architectures.
We propose a more flexible discretized Gaussian-Laplacian-Logistic mixture model (GLLMM) for the latent representations.
In the encoding/decoding network design part, we propose a residual blocks (CRB) where multiple residual blocks are serially connected with additional shortcut connections.
arXiv Detail & Related papers (2021-07-14T02:54:22Z) - Collaborative Distillation for Ultra-Resolution Universal Style Transfer [71.18194557949634]
We present a new knowledge distillation method (named Collaborative Distillation) for encoder-decoder based neural style transfer.
We achieve ultra-resolution (over 40 megapixels) universal style transfer on a 12GB GPU for the first time.
arXiv Detail & Related papers (2020-03-18T18:59:31Z) - Learning End-to-End Lossy Image Compression: A Benchmark [90.35363142246806]
We first conduct a comprehensive literature survey of learned image compression methods.
We describe milestones in cutting-edge learned image-compression methods, review a broad range of existing works, and provide insights into their historical development routes.
By introducing a coarse-to-fine hyperprior model for entropy estimation and signal reconstruction, we achieve improved rate-distortion performance.
arXiv Detail & Related papers (2020-02-10T13:13:43Z) - A Unified End-to-End Framework for Efficient Deep Image Compression [35.156677716140635]
We propose a unified framework called Efficient Deep Image Compression (EDIC) based on three new technologies.
Specifically, we design an auto-encoder style network for learning based image compression.
Our EDIC method can also be readily incorporated with the Deep Video Compression (DVC) framework to further improve the video compression performance.
arXiv Detail & Related papers (2020-02-09T14:21:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.