MMGDreamer: Mixed-Modality Graph for Geometry-Controllable 3D Indoor Scene Generation
- URL: http://arxiv.org/abs/2502.05874v1
- Date: Sun, 09 Feb 2025 12:23:40 GMT
- Title: MMGDreamer: Mixed-Modality Graph for Geometry-Controllable 3D Indoor Scene Generation
- Authors: Zhifei Yang, Keyang Lu, Chao Zhang, Jiaxing Qi, Hanqi Jiang, Ruifei Ma, Shenglin Yin, Yifan Xu, Mingzhe Xing, Zhen Xiao, Jieyi Long, Xiangde Liu, Guangyao Zhai,
- Abstract summary: MMGDreamer is a dual-branch diffusion model for scene generation that incorporates a novel Mixed-Modality Graph.
Visual enhancement module enriches the visual fidelity of text-only nodes by constructing visual representations using text embeddings.
Our relation predictor leverages node representations to infer absent relationships between nodes, resulting in more coherent scene layouts.
- Score: 15.034953371498228
- License:
- Abstract: Controllable 3D scene generation has extensive applications in virtual reality and interior design, where the generated scenes should exhibit high levels of realism and controllability in terms of geometry. Scene graphs provide a suitable data representation that facilitates these applications. However, current graph-based methods for scene generation are constrained to text-based inputs and exhibit insufficient adaptability to flexible user inputs, hindering the ability to precisely control object geometry. To address this issue, we propose MMGDreamer, a dual-branch diffusion model for scene generation that incorporates a novel Mixed-Modality Graph, visual enhancement module, and relation predictor. The mixed-modality graph allows object nodes to integrate textual and visual modalities, with optional relationships between nodes. It enhances adaptability to flexible user inputs and enables meticulous control over the geometry of objects in the generated scenes. The visual enhancement module enriches the visual fidelity of text-only nodes by constructing visual representations using text embeddings. Furthermore, our relation predictor leverages node representations to infer absent relationships between nodes, resulting in more coherent scene layouts. Extensive experimental results demonstrate that MMGDreamer exhibits superior control of object geometry, achieving state-of-the-art scene generation performance. Project page: https://yangzhifeio.github.io/project/MMGDreamer.
Related papers
- Multiview Scene Graph [7.460438046915524]
A proper scene representation is central to the pursuit of spatial intelligence.
We propose to build Multiview Scene Graphs (MSG) from unposed images.
MSG represents a scene topologically with interconnected place and object nodes.
arXiv Detail & Related papers (2024-10-15T02:04:05Z) - Scene Graph Disentanglement and Composition for Generalizable Complex Image Generation [44.457347230146404]
We leverage the scene graph, a powerful structured representation, for complex image generation.
We employ the generative capabilities of variational autoencoders and diffusion models in a generalizable manner.
Our method outperforms recent competitors based on text, layout, or scene graph.
arXiv Detail & Related papers (2024-10-01T07:02:46Z) - GraphDreamer: Compositional 3D Scene Synthesis from Scene Graphs [74.98581417902201]
We propose a novel framework to generate compositional 3D scenes from scene graphs.
By exploiting node and edge information in scene graphs, our method makes better use of the pretrained text-to-image diffusion model.
We conduct both qualitative and quantitative experiments to validate the effectiveness of GraphDreamer.
arXiv Detail & Related papers (2023-11-30T18:59:58Z) - Local-Global Information Interaction Debiasing for Dynamic Scene Graph
Generation [51.92419880088668]
We propose a novel DynSGG model based on multi-task learning, DynSGG-MTL, which introduces the local interaction information and global human-action interaction information.
Long-temporal human actions supervise the model to generate multiple scene graphs that conform to the global constraints and avoid the model being unable to learn the tail predicates.
arXiv Detail & Related papers (2023-08-10T01:24:25Z) - CommonScenes: Generating Commonsense 3D Indoor Scenes with Scene Graph
Diffusion [83.30168660888913]
We present CommonScenes, a fully generative model that converts scene graphs into corresponding controllable 3D scenes.
Our pipeline consists of two branches, one predicting the overall scene layout via a variational auto-encoder and the other generating compatible shapes.
The generated scenes can be manipulated by editing the input scene graph and sampling the noise in the diffusion model.
arXiv Detail & Related papers (2023-05-25T17:39:13Z) - Iterative Scene Graph Generation [55.893695946885174]
Scene graph generation involves identifying object entities and their corresponding interaction predicates in a given image (or video)
Existing approaches to scene graph generation assume certain factorization of the joint distribution to make the estimation iteration feasible.
We propose a novel framework that addresses this limitation, as well as introduces dynamic conditioning on the image.
arXiv Detail & Related papers (2022-07-27T10:37:29Z) - Graph-to-3D: End-to-End Generation and Manipulation of 3D Scenes Using
Scene Graphs [85.54212143154986]
Controllable scene synthesis consists of generating 3D information that satisfy underlying specifications.
Scene graphs are representations of a scene composed of objects (nodes) and inter-object relationships (edges)
We propose the first work that directly generates shapes from a scene graph in an end-to-end manner.
arXiv Detail & Related papers (2021-08-19T17:59:07Z) - Unconditional Scene Graph Generation [72.53624470737712]
We develop a deep auto-regressive model called SceneGraphGen which can learn the probability distribution over labelled and directed graphs.
We show that the scene graphs generated by SceneGraphGen are diverse and follow the semantic patterns of real-world scenes.
arXiv Detail & Related papers (2021-08-12T17:57:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.