Speech to Speech Translation with Translatotron: A State of the Art Review
- URL: http://arxiv.org/abs/2502.05980v2
- Date: Wed, 19 Feb 2025 21:39:35 GMT
- Title: Speech to Speech Translation with Translatotron: A State of the Art Review
- Authors: Jules R. Kala, Emmanuel Adetiba, Abdultaofeek Abayom, Oluwatobi E. Dare, Ayodele H. Ifijeh,
- Abstract summary: A cascade-based speech-to-speech translation has been considered a benchmark for a very long time.
It is plagued by many issues, like the time taken to translate a speech from one language to another and compound errors.
Translatotron, a sequence-to-sequence direct speech-to-speech translation model was designed by Google to address these issues.
- Score: 0.0
- License:
- Abstract: A cascade-based speech-to-speech translation has been considered a benchmark for a very long time, but it is plagued by many issues, like the time taken to translate a speech from one language to another and compound errors. These issues are because a cascade-based method uses a combination of methods such as speech recognition, speech-to-text translation, and finally, text-to-speech translation. Translatotron, a sequence-to-sequence direct speech-to-speech translation model was designed by Google to address the issues of compound errors associated with cascade model. Today there are 3 versions of the Translatotron model: Translatotron 1, Translatotron 2, and Translatotron3. The first version was designed as a proof of concept to show that a direct speech-to-speech translation was possible, it was found to be less effective than the cascade model but was producing promising results. Translatotron2 was an improved version of Translatotron 1 with results similar to the cascade model. Translatotron 3 the latest version of the model is better than the cascade model at some points. In this paper, a complete review of speech-to-speech translation will be presented, with a particular focus on all the versions of Translatotron models. We will also show that Translatotron is the best model to bridge the language gap between African Languages and other well-formalized languages.
Related papers
- TransVIP: Speech to Speech Translation System with Voice and Isochrony Preservation [97.54885207518946]
We introduce a novel model framework TransVIP that leverages diverse datasets in a cascade fashion.
We propose two separated encoders to preserve the speaker's voice characteristics and isochrony from the source speech during the translation process.
Our experiments on the French-English language pair demonstrate that our model outperforms the current state-of-the-art speech-to-speech translation model.
arXiv Detail & Related papers (2024-05-28T04:11:37Z) - TransFace: Unit-Based Audio-Visual Speech Synthesizer for Talking Head
Translation [54.155138561698514]
Direct speech-to-speech translation achieves high-quality results through the introduction of discrete units obtained from self-supervised learning.
Existing methods invariably rely on cascading, synthesizing via both audio and text, resulting in delays and cascading errors.
We propose a model for talking head translation, textbfTransFace, which can directly translate audio-visual speech into audio-visual speech in other languages.
arXiv Detail & Related papers (2023-12-23T08:45:57Z) - SeamlessM4T: Massively Multilingual & Multimodal Machine Translation [90.71078166159295]
We introduce SeamlessM4T, a single model that supports speech-to-speech translation, speech-to-text translation, text-to-text translation, and automatic speech recognition for up to 100 languages.
We developed the first multilingual system capable of translating from and into English for both speech and text.
On FLEURS, SeamlessM4T sets a new standard for translations into multiple target languages, achieving an improvement of 20% BLEU over the previous SOTA in direct speech-to-text translation.
arXiv Detail & Related papers (2023-08-22T17:44:18Z) - Translatotron 3: Speech to Speech Translation with Monolingual Data [23.376969078371282]
Translatotron 3 is a novel approach to unsupervised direct speech-to-speech translation from monolingual speech-text datasets.
Results show that Translatotron 3 outperforms a baseline cascade system.
arXiv Detail & Related papers (2023-05-27T18:30:54Z) - Textless Direct Speech-to-Speech Translation with Discrete Speech
Representation [27.182170555234226]
We propose a novel model, Textless Translatotron, for training an end-to-end direct S2ST model without any textual supervision.
When a speech encoder pre-trained with unsupervised speech data is used for both models, the proposed model obtains translation quality nearly on-par with Translatotron 2.
arXiv Detail & Related papers (2022-10-31T19:48:38Z) - Joint Pre-Training with Speech and Bilingual Text for Direct Speech to
Speech Translation [94.80029087828888]
Direct speech-to-speech translation (S2ST) is an attractive research topic with many advantages compared to cascaded S2ST.
Direct S2ST suffers from the data scarcity problem because the corpora from speech of the source language to speech of the target language are very rare.
We propose in this paper a Speech2S model, which is jointly pre-trained with unpaired speech and bilingual text data for direct speech-to-speech translation tasks.
arXiv Detail & Related papers (2022-10-31T02:55:51Z) - TranSpeech: Speech-to-Speech Translation With Bilateral Perturbation [61.564874831498145]
TranSpeech is a speech-to-speech translation model with bilateral perturbation.
We establish a non-autoregressive S2ST technique, which repeatedly masks and predicts unit choices.
TranSpeech shows a significant improvement in inference latency, enabling speedup up to 21.4x than autoregressive technique.
arXiv Detail & Related papers (2022-05-25T06:34:14Z) - Translatotron 2: Robust direct speech-to-speech translation [6.3470332633611015]
We present Translatotron 2, a neural direct speech-to-speech translation model that can be trained end-to-end.
Translatotron 2 outperforms the original Translatotron by a large margin in terms of translation quality and predicted speech naturalness.
We propose a new method for retaining the source speaker's voice in the translated speech.
arXiv Detail & Related papers (2021-07-19T07:43:49Z) - Bridging the Modality Gap for Speech-to-Text Translation [57.47099674461832]
End-to-end speech translation aims to translate speech in one language into text in another language via an end-to-end way.
Most existing methods employ an encoder-decoder structure with a single encoder to learn acoustic representation and semantic information simultaneously.
We propose a Speech-to-Text Adaptation for Speech Translation model which aims to improve the end-to-end model performance by bridging the modality gap between speech and text.
arXiv Detail & Related papers (2020-10-28T12:33:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.