Motion Control in Multi-Rotor Aerial Robots Using Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2502.05996v1
- Date: Sun, 09 Feb 2025 19:00:16 GMT
- Title: Motion Control in Multi-Rotor Aerial Robots Using Deep Reinforcement Learning
- Authors: Gaurav Shetty, Mahya Ramezani, Hamed Habibi, Holger Voos, Jose Luis Sanchez-Lopez,
- Abstract summary: This paper investigates the application of Deep Reinforcement (DRL) Learning to address motion control challenges in drones for additive manufacturing (AM)
We propose a DRL framework that learns adaptable control policies for multi-rotor drones performing waypoint navigation in AM tasks.
- Score: 0.0
- License:
- Abstract: This paper investigates the application of Deep Reinforcement (DRL) Learning to address motion control challenges in drones for additive manufacturing (AM). Drone-based additive manufacturing promises flexible and autonomous material deposition in large-scale or hazardous environments. However, achieving robust real-time control of a multi-rotor aerial robot under varying payloads and potential disturbances remains challenging. Traditional controllers like PID often require frequent parameter re-tuning, limiting their applicability in dynamic scenarios. We propose a DRL framework that learns adaptable control policies for multi-rotor drones performing waypoint navigation in AM tasks. We compare Deep Deterministic Policy Gradient (DDPG) and Twin Delayed Deep Deterministic Policy Gradient (TD3) within a curriculum learning scheme designed to handle increasing complexity. Our experiments show TD3 consistently balances training stability, accuracy, and success, particularly when mass variability is introduced. These findings provide a scalable path toward robust, autonomous drone control in additive manufacturing.
Related papers
- Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
We propose a differentiable simulator and design an analytic policy gradients (APG) approach to training AV controllers.
Our proposed framework brings the differentiable simulator into an end-to-end training loop, where gradients of environment dynamics serve as a useful prior to help the agent learn a more grounded policy.
We find significant improvements in performance and robustness to noise in the dynamics, as well as overall more intuitive human-like handling.
arXiv Detail & Related papers (2024-09-12T11:50:06Z) - AirPilot: Interpretable PPO-based DRL Auto-Tuned Nonlinear PID Drone Controller for Robust Autonomous Flights [0.046873264197900916]
AirPilot is a nonlinear Deep Reinforcement Learning (DRL) - enhanced Proportional Integral Derivative (PID) drone controller.
AirPilot controller combines the simplicity and effectiveness of traditional PID control with the adaptability, learning capability, and optimization potential of DRL.
Airpilot is capable of reducing the navigation error of the default PX4 PID position controller by 90%, improving effective navigation speed of a fine-tuned PID controller by 21%.
arXiv Detail & Related papers (2024-03-30T00:46:43Z) - Lander.AI: Adaptive Landing Behavior Agent for Expertise in 3D Dynamic
Platform Landings [2.5022287664959446]
This study introduces an advanced Deep Reinforcement Learning (DRL) agent, Lander:AI, designed to navigate and land on platforms in the presence of windy conditions.
Lander:AI is rigorously trained within the gym-pybullet-drone simulation, an environment that mirrors real-world complexities, including wind turbulence.
The experimental results showcased Lander:AI's high-precision landing and its ability to adapt to moving platforms, even under wind-induced disturbances.
arXiv Detail & Related papers (2024-03-11T10:20:44Z) - Reinforcement Learning for Versatile, Dynamic, and Robust Bipedal Locomotion Control [106.32794844077534]
This paper presents a study on using deep reinforcement learning to create dynamic locomotion controllers for bipedal robots.
We develop a general control solution that can be used for a range of dynamic bipedal skills, from periodic walking and running to aperiodic jumping and standing.
This work pushes the limits of agility for bipedal robots through extensive real-world experiments.
arXiv Detail & Related papers (2024-01-30T10:48:43Z) - Modelling, Positioning, and Deep Reinforcement Learning Path Tracking
Control of Scaled Robotic Vehicles: Design and Experimental Validation [3.807917169053206]
Scaled robotic cars are commonly equipped with a hierarchical control acthiecture that includes tasks dedicated to vehicle state estimation and control.
This paper covers both aspects by proposing (i) a federeted extended Kalman filter (FEKF) and (ii) a novel deep reinforcement learning (DRL) path tracking controller trained via an expert demonstrator.
The experimentally validated model is used for (i) supporting the design of the FEKF and (ii) serving as a digital twin for training the proposed DRL-based path tracking algorithm.
arXiv Detail & Related papers (2024-01-10T14:40:53Z) - DATT: Deep Adaptive Trajectory Tracking for Quadrotor Control [62.24301794794304]
Deep Adaptive Trajectory Tracking (DATT) is a learning-based approach that can precisely track arbitrary, potentially infeasible trajectories in the presence of large disturbances in the real world.
DATT significantly outperforms competitive adaptive nonlinear and model predictive controllers for both feasible smooth and infeasible trajectories in unsteady wind fields.
It can efficiently run online with an inference time less than 3.2 ms, less than 1/4 of the adaptive nonlinear model predictive control baseline.
arXiv Detail & Related papers (2023-10-13T12:22:31Z) - Real-Time Model-Free Deep Reinforcement Learning for Force Control of a
Series Elastic Actuator [56.11574814802912]
State-of-the art robotic applications utilize series elastic actuators (SEAs) with closed-loop force control to achieve complex tasks such as walking, lifting, and manipulation.
Model-free PID control methods are more prone to instability due to nonlinearities in the SEA.
Deep reinforcement learning has proved to be an effective model-free method for continuous control tasks.
arXiv Detail & Related papers (2023-04-11T00:51:47Z) - Designing a Robust Low-Level Agnostic Controller for a Quadrotor with
Actor-Critic Reinforcement Learning [0.38073142980732994]
We introduce domain randomization during the training phase of a low-level waypoint guidance controller based on Soft Actor-Critic.
We show that, by introducing a certain degree of uncertainty in quadrotor dynamics during training, we can obtain a controller that is capable to perform the proposed task using a larger variation of quadrotor parameters.
arXiv Detail & Related papers (2022-10-06T14:58:19Z) - Data-Efficient Deep Reinforcement Learning for Attitude Control of
Fixed-Wing UAVs: Field Experiments [0.37798600249187286]
We show that DRL can successfully learn to perform attitude control of a fixed-wing UAV operating directly on the original nonlinear dynamics.
We deploy the learned controller on the UAV in flight tests, demonstrating comparable performance to the state-of-the-art ArduPlane proportional-integral-derivative (PID) attitude controller.
arXiv Detail & Related papers (2021-11-07T19:07:46Z) - OSCAR: Data-Driven Operational Space Control for Adaptive and Robust
Robot Manipulation [50.59541802645156]
Operational Space Control (OSC) has been used as an effective task-space controller for manipulation.
We propose OSC for Adaptation and Robustness (OSCAR), a data-driven variant of OSC that compensates for modeling errors.
We evaluate our method on a variety of simulated manipulation problems, and find substantial improvements over an array of controller baselines.
arXiv Detail & Related papers (2021-10-02T01:21:38Z) - Reinforcement Learning for Robust Parameterized Locomotion Control of
Bipedal Robots [121.42930679076574]
We present a model-free reinforcement learning framework for training robust locomotion policies in simulation.
domain randomization is used to encourage the policies to learn behaviors that are robust across variations in system dynamics.
We demonstrate this on versatile walking behaviors such as tracking a target walking velocity, walking height, and turning yaw.
arXiv Detail & Related papers (2021-03-26T07:14:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.