Right Time to Learn:Promoting Generalization via Bio-inspired Spacing Effect in Knowledge Distillation
- URL: http://arxiv.org/abs/2502.06192v1
- Date: Mon, 10 Feb 2025 06:48:04 GMT
- Title: Right Time to Learn:Promoting Generalization via Bio-inspired Spacing Effect in Knowledge Distillation
- Authors: Guanglong Sun, Hongwei Yan, Liyuan Wang, Qian Li, Bo Lei, Yi Zhong,
- Abstract summary: Knowledge distillation (KD) is a powerful strategy for training deep neural networks (DNNs)
Here, we propose an accessible and compatible strategy named Spaced KD to improve the effectiveness of both online KD and self KD.
- Score: 22.405358471722273
- License:
- Abstract: Knowledge distillation (KD) is a powerful strategy for training deep neural networks (DNNs). Although it was originally proposed to train a more compact ``student'' model from a large ``teacher'' model, many recent efforts have focused on adapting it to promote generalization of the model itself, such as online KD and self KD. % as an effective way Here, we propose an accessible and compatible strategy named Spaced KD to improve the effectiveness of both online KD and self KD, in which the student model distills knowledge from a teacher model trained with a space interval ahead. This strategy is inspired by a prominent theory named \emph{spacing effect} in biological learning and memory, positing that appropriate intervals between learning trials can significantly enhance learning performance. With both theoretical and empirical analyses, we demonstrate that the benefits of the proposed Spaced KD stem from convergence to a flatter loss landscape during stochastic gradient descent (SGD). We perform extensive experiments to validate the effectiveness of Spaced KD in improving the learning performance of DNNs (e.g., the performance gain is up to 2.31\% and 3.34\% on Tiny-ImageNet over online KD and self KD, respectively).
Related papers
- Revisiting Knowledge Distillation for Autoregressive Language Models [88.80146574509195]
We propose a simple yet effective adaptive teaching approach (ATKD) to improve the knowledge distillation (KD)
The core of ATKD is to reduce rote learning and make teaching more diverse and flexible.
Experiments on 8 LM tasks show that, with the help of ATKD, various baseline KD methods can achieve consistent and significant performance gains.
arXiv Detail & Related papers (2024-02-19T07:01:10Z) - DistiLLM: Towards Streamlined Distillation for Large Language Models [53.46759297929675]
DistiLLM is a more effective and efficient KD framework for auto-regressive language models.
DisiLLM comprises two components: (1) a novel skew Kullback-Leibler divergence loss, where we unveil and leverage its theoretical properties, and (2) an adaptive off-policy approach designed to enhance the efficiency in utilizing student-generated outputs.
arXiv Detail & Related papers (2024-02-06T11:10:35Z) - Comparative Knowledge Distillation [102.35425896967791]
Traditional Knowledge Distillation (KD) assumes readily available access to teacher models for frequent inference.
We propose Comparative Knowledge Distillation (CKD), which encourages student models to understand the nuanced differences in a teacher model's interpretations of samples.
CKD consistently outperforms state of the art data augmentation and KD techniques.
arXiv Detail & Related papers (2023-11-03T21:55:33Z) - Categories of Response-Based, Feature-Based, and Relation-Based
Knowledge Distillation [10.899753512019933]
Knowledge Distillation (KD) aims to optimize a lightweight network.
KD mainly involves knowledge extraction and distillation strategies.
This paper provides a comprehensive KD survey, including knowledge categories, distillation schemes and algorithms.
arXiv Detail & Related papers (2023-06-19T03:42:44Z) - How and When Adversarial Robustness Transfers in Knowledge Distillation? [137.11016173468457]
This paper studies how and when the adversarial robustness can be transferred from a teacher model to a student model in Knowledge distillation (KD)
We show that standard KD training fails to preserve adversarial robustness, and we propose KD with input gradient alignment (KDIGA) for remedy.
Under certain assumptions, we prove that the student model using our proposed KDIGA can achieve at least the same certified robustness as the teacher model.
arXiv Detail & Related papers (2021-10-22T21:30:53Z) - Dynamic Knowledge Distillation for Pre-trained Language Models [32.63862596630663]
We explore whether a dynamic knowledge distillation that empowers the student to adjust the learning procedure according to its competency.
Experimental results show that proper selection of teacher model can boost the performance of student model.
We find dynamic knowledge distillation is promising and provide discussions on potential future directions.
arXiv Detail & Related papers (2021-09-23T11:02:24Z) - Undistillable: Making A Nasty Teacher That CANNOT teach students [84.6111281091602]
This paper introduces and investigates a concept called Nasty Teacher: a specially trained teacher network that yields nearly the same performance as a normal one.
We propose a simple yet effective algorithm to build the nasty teacher, called self-undermining knowledge distillation.
arXiv Detail & Related papers (2021-05-16T08:41:30Z) - Knowledge Distillation Thrives on Data Augmentation [65.58705111863814]
Knowledge distillation (KD) is a general deep neural network training framework that uses a teacher model to guide a student model.
Many works have explored the rationale for its success, however, its interplay with data augmentation (DA) has not been well recognized so far.
In this paper, we are motivated by an interesting observation in classification: KD loss can benefit from extended training iterations while the cross-entropy loss does not.
We show this disparity arises because of data augmentation: KD loss can tap into the extra information from different input views brought by DA.
arXiv Detail & Related papers (2020-12-05T00:32:04Z) - Ensemble Knowledge Distillation for CTR Prediction [46.92149090885551]
We propose a new model training strategy based on knowledge distillation (KD)
KD is a teacher-student learning framework to transfer knowledge learned from a teacher model to a student model.
We propose some novel techniques to facilitate ensembled CTR prediction, including teacher gating and early stopping by distillation loss.
arXiv Detail & Related papers (2020-11-08T23:37:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.