Spectral-factorized Positive-definite Curvature Learning for NN Training
- URL: http://arxiv.org/abs/2502.06268v1
- Date: Mon, 10 Feb 2025 09:07:04 GMT
- Title: Spectral-factorized Positive-definite Curvature Learning for NN Training
- Authors: Wu Lin, Felix Dangel, Runa Eschenhagen, Juhan Bae, Richard E. Turner, Roger B. Grosse,
- Abstract summary: Training methods such as Adam(W) and Shampoo learn a positive-definite curvature matrix and apply an inverse root before preconditioning.
We propose a Riemannian optimization approach that dynamically adapts spectral-factorized positive-definite curvature estimates.
- Score: 39.296923519945814
- License:
- Abstract: Many training methods, such as Adam(W) and Shampoo, learn a positive-definite curvature matrix and apply an inverse root before preconditioning. Recently, non-diagonal training methods, such as Shampoo, have gained significant attention; however, they remain computationally inefficient and are limited to specific types of curvature information due to the costly matrix root computation via matrix decomposition. To address this, we propose a Riemannian optimization approach that dynamically adapts spectral-factorized positive-definite curvature estimates, enabling the efficient application of arbitrary matrix roots and generic curvature learning. We demonstrate the efficacy and versatility of our approach in positive-definite matrix optimization and covariance adaptation for gradient-free optimization, as well as its efficiency in curvature learning for neural net training.
Related papers
- Gradient-Variation Online Learning under Generalized Smoothness [56.38427425920781]
gradient-variation online learning aims to achieve regret guarantees that scale with variations in gradients of online functions.
Recent efforts in neural network optimization suggest a generalized smoothness condition, allowing smoothness to correlate with gradient norms.
We provide the applications for fast-rate convergence in games and extended adversarial optimization.
arXiv Detail & Related papers (2024-08-17T02:22:08Z) - Operator SVD with Neural Networks via Nested Low-Rank Approximation [19.562492156734653]
This paper proposes a new optimization framework based on the low-rank approximation characterization of a truncated singular value decomposition.
New techniques called emphnesting for learning the top-$L$ singular values and singular functions in the correct order.
We demonstrate the effectiveness of the proposed framework for use cases in computational physics and machine learning.
arXiv Detail & Related papers (2024-02-06T03:06:06Z) - Multi-objective Reinforcement Learning with Nonlinear Preferences: Provable Approximation for Maximizing Expected Scalarized Return [1.3162012586770577]
We study multi-objective reinforcement learning with nonlinear preferences over trajectories.
We derive an extended form of Bellman optimality for nonlinear optimization.
We show that there can be a substantial gap between the optimal policy computed by our algorithm and alternative baselines.
arXiv Detail & Related papers (2023-11-05T02:11:07Z) - Stochastic Gradient Descent for Gaussian Processes Done Right [86.83678041846971]
We show that when emphdone right -- by which we mean using specific insights from optimisation and kernel communities -- gradient descent is highly effective.
We introduce a emphstochastic dual descent algorithm, explain its design in an intuitive manner and illustrate the design choices.
Our method places Gaussian process regression on par with state-of-the-art graph neural networks for molecular binding affinity prediction.
arXiv Detail & Related papers (2023-10-31T16:15:13Z) - An Accelerated Block Proximal Framework with Adaptive Momentum for
Nonconvex and Nonsmooth Optimization [2.323238724742687]
We propose an accelerated block proximal linear framework with adaptive momentum (ABPL$+$) for nonsmooth and nonsmooth optimization.
We analyze the potential causes of the extrapolation step failing in some algorithms, and resolve this issue by enhancing the comparison process.
We extend our algorithm to any scenario involving updating the gradient step and the linear extrapolation step.
arXiv Detail & Related papers (2023-08-23T13:32:31Z) - Neural incomplete factorization: learning preconditioners for the conjugate gradient method [2.899792823251184]
We develop a data-driven approach to accelerate the generation of effective preconditioners.
We replace the typically hand-engineered preconditioners by the output of graph neural networks.
Our method generates an incomplete factorization of the matrix and is, therefore, referred to as neural incomplete factorization (NeuralIF)
arXiv Detail & Related papers (2023-05-25T11:45:46Z) - Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization [73.80101701431103]
The linearized-Laplace approximation (LLA) has been shown to be effective and efficient in constructing Bayesian neural networks.
We study the usefulness of the LLA in Bayesian optimization and highlight its strong performance and flexibility.
arXiv Detail & Related papers (2023-04-17T14:23:43Z) - Scalable Bayesian Meta-Learning through Generalized Implicit Gradients [64.21628447579772]
Implicit Bayesian meta-learning (iBaML) method broadens the scope of learnable priors, but also quantifies the associated uncertainty.
Analytical error bounds are established to demonstrate the precision and efficiency of the generalized implicit gradient over the explicit one.
arXiv Detail & Related papers (2023-03-31T02:10:30Z) - Local Quadratic Convergence of Stochastic Gradient Descent with Adaptive
Step Size [29.15132344744801]
We establish local convergence for gradient descent with adaptive step size for problems such as matrix inversion.
We show that these first order optimization methods can achieve sub-linear or linear convergence.
arXiv Detail & Related papers (2021-12-30T00:50:30Z) - Controllable Orthogonalization in Training DNNs [96.1365404059924]
Orthogonality is widely used for training deep neural networks (DNNs) due to its ability to maintain all singular values of the Jacobian close to 1.
This paper proposes a computationally efficient and numerically stable orthogonalization method using Newton's iteration (ONI)
We show that our method improves the performance of image classification networks by effectively controlling the orthogonality to provide an optimal tradeoff between optimization benefits and representational capacity reduction.
We also show that ONI stabilizes the training of generative adversarial networks (GANs) by maintaining the Lipschitz continuity of a network, similar to spectral normalization (
arXiv Detail & Related papers (2020-04-02T10:14:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.