When Data Manipulation Meets Attack Goals: An In-depth Survey of Attacks for VLMs
- URL: http://arxiv.org/abs/2502.06390v2
- Date: Tue, 11 Feb 2025 04:42:24 GMT
- Title: When Data Manipulation Meets Attack Goals: An In-depth Survey of Attacks for VLMs
- Authors: Aobotao Dai, Xinyu Ma, Lei Chen, Songze Li, Lin Wang,
- Abstract summary: We present an in-depth survey of the attack strategies tailored for Vision-Language Models (VLMs)<n>We categorize these attacks based on their underlying objectives.<n>We outline corresponding defense mechanisms that have been proposed to mitigate these vulnerabilities.
- Score: 15.74045364570382
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vision-Language Models (VLMs) have gained considerable prominence in recent years due to their remarkable capability to effectively integrate and process both textual and visual information. This integration has significantly enhanced performance across a diverse spectrum of applications, such as scene perception and robotics. However, the deployment of VLMs has also given rise to critical safety and security concerns, necessitating extensive research to assess the potential vulnerabilities these VLM systems may harbor. In this work, we present an in-depth survey of the attack strategies tailored for VLMs. We categorize these attacks based on their underlying objectives - namely jailbreak, camouflage, and exploitation - while also detailing the various methodologies employed for data manipulation of VLMs. Meanwhile, we outline corresponding defense mechanisms that have been proposed to mitigate these vulnerabilities. By discerning key connections and distinctions among the diverse types of attacks, we propose a compelling taxonomy for VLM attacks. Moreover, we summarize the evaluation metrics that comprehensively describe the characteristics and impact of different attacks on VLMs. Finally, we conclude with a discussion of promising future research directions that could further enhance the robustness and safety of VLMs, emphasizing the importance of ongoing exploration in this critical area of study. To facilitate community engagement, we maintain an up-to-date project page, accessible at: https://github.com/AobtDai/VLM_Attack_Paper_List.
Related papers
- LLM-Safety Evaluations Lack Robustness [58.334290876531036]
We argue that current safety alignment research efforts for large language models are hindered by many intertwined sources of noise.
We propose a set of guidelines for reducing noise and bias in evaluations of future attack and defense papers.
arXiv Detail & Related papers (2025-03-04T12:55:07Z) - A Survey of Safety on Large Vision-Language Models: Attacks, Defenses and Evaluations [127.52707312573791]
This survey provides a comprehensive analysis of LVLM safety, covering key aspects such as attacks, defenses, and evaluation methods.
We introduce a unified framework that integrates these interrelated components, offering a holistic perspective on the vulnerabilities of LVLMs.
We conduct a set of safety evaluations on the latest LVLM, Deepseek Janus-Pro, and provide a theoretical analysis of the results.
arXiv Detail & Related papers (2025-02-14T08:42:43Z) - Model Inversion Attacks: A Survey of Approaches and Countermeasures [59.986922963781]
Recently, a new type of privacy attack, the model inversion attacks (MIAs), aims to extract sensitive features of private data for training.
Despite the significance, there is a lack of systematic studies that provide a comprehensive overview and deeper insights into MIAs.
This survey aims to summarize up-to-date MIA methods in both attacks and defenses.
arXiv Detail & Related papers (2024-11-15T08:09:28Z) - Jailbreaking and Mitigation of Vulnerabilities in Large Language Models [4.564507064383306]
Large Language Models (LLMs) have transformed artificial intelligence by advancing natural language understanding and generation.
Despite these advancements, LLMs have shown considerable vulnerabilities, particularly to prompt injection and jailbreaking attacks.
This review analyzes the state of research on these vulnerabilities and presents available defense strategies.
arXiv Detail & Related papers (2024-10-20T00:00:56Z) - $\textit{MMJ-Bench}$: A Comprehensive Study on Jailbreak Attacks and Defenses for Multimodal Large Language Models [11.02754617539271]
We introduce textitMMJ-Bench, a unified pipeline for evaluating jailbreak attacks and defense techniques for MLLMs.
We assess the effectiveness of various attack methods against SoTA MLLMs and evaluate the impact of defense mechanisms on both defense effectiveness and model utility.
arXiv Detail & Related papers (2024-08-16T00:18:23Z) - A Survey of Attacks on Large Vision-Language Models: Resources, Advances, and Future Trends [78.3201480023907]
Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities across a wide range of multimodal understanding and reasoning tasks.
The vulnerability of LVLMs is relatively underexplored, posing potential security risks in daily usage.
In this paper, we provide a comprehensive review of the various forms of existing LVLM attacks.
arXiv Detail & Related papers (2024-07-10T06:57:58Z) - Breaking Down the Defenses: A Comparative Survey of Attacks on Large Language Models [18.624280305864804]
Large Language Models (LLMs) have become a cornerstone in the field of Natural Language Processing (NLP)
This paper presents a comprehensive survey of the various forms of attacks targeting LLMs.
We delve into topics such as adversarial attacks that aim to manipulate model outputs, data poisoning that affects model training, and privacy concerns related to training data exploitation.
arXiv Detail & Related papers (2024-03-03T04:46:21Z) - A Comprehensive Survey of Attack Techniques, Implementation, and Mitigation Strategies in Large Language Models [0.0]
This article explores two attack categories: attacks on models themselves and attacks on model applications.
The former requires expertise, access to model data, and significant implementation time.
The latter is more accessible to attackers and has seen increased attention.
arXiv Detail & Related papers (2023-12-18T07:07:32Z) - Privacy in Large Language Models: Attacks, Defenses and Future Directions [84.73301039987128]
We analyze the current privacy attacks targeting large language models (LLMs) and categorize them according to the adversary's assumed capabilities.
We present a detailed overview of prominent defense strategies that have been developed to counter these privacy attacks.
arXiv Detail & Related papers (2023-10-16T13:23:54Z) - On Evaluating Adversarial Robustness of Large Vision-Language Models [64.66104342002882]
We evaluate the robustness of large vision-language models (VLMs) in the most realistic and high-risk setting.
In particular, we first craft targeted adversarial examples against pretrained models such as CLIP and BLIP.
Black-box queries on these VLMs can further improve the effectiveness of targeted evasion.
arXiv Detail & Related papers (2023-05-26T13:49:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.