Group-CLIP Uncertainty Modeling for Group Re-Identification
- URL: http://arxiv.org/abs/2502.06460v1
- Date: Mon, 10 Feb 2025 13:41:35 GMT
- Title: Group-CLIP Uncertainty Modeling for Group Re-Identification
- Authors: Qingxin Zhang, Haoyan Wei, Yang Qian,
- Abstract summary: Group ReID aims to match groups of pedestrians across non-overlapping cameras.
Most methods rely on certainty-based models, which consider only the specific group structures in the group images.
We propose a novel Group-CLIP UncertaintyModeling (GCUM) approach that adapts group text descriptions to accommodate member and layout variations.
- Score: 0.0
- License:
- Abstract: Group Re-Identification (Group ReID) aims matching groups of pedestrians across non-overlapping cameras. Unlike single-person ReID, Group ReID focuses more on the changes in group structure, emphasizing the number of members and their spatial arrangement. However, most methods rely on certainty-based models, which consider only the specific group structures in the group images, often failing to match unseen group configurations. To this end, we propose a novel Group-CLIP UncertaintyModeling (GCUM) approach that adapts group text descriptions to undetermined accommodate member and layout variations. Specifically, we design a Member Variant Simulation (MVS)module that simulates member exclusions using a Bernoulli distribution and a Group Layout Adaptation (GLA) module that generates uncertain group text descriptions with identity-specific tokens. In addition, we design a Group RelationshipConstruction Encoder (GRCE) that uses group features to refine individual features, and employ cross-modal contrastive loss to obtain generalizable knowledge from group text descriptions. It is worth noting that we are the first to employ CLIP to GroupReID, and extensive experiments show that GCUM significantly outperforms state-of-the-art Group ReID methods.
Related papers
- Vision Transformer based Random Walk for Group Re-Identification [15.63292108454152]
Group re-identification (re-ID) aims to match groups with the same people under different cameras.
We propose a novel vision transformer based random walk framework for group re-ID.
arXiv Detail & Related papers (2024-10-08T08:41:14Z) - The Research of Group Re-identification from Multiple Cameras [0.4955551943523977]
Group re-identification is very challenging since it is not only interfered by view-point and human pose variations in the traditional re-identification tasks.
This paper introduces a novel approach which leverages the multi-granularity information inside groups to facilitate group re-identification.
arXiv Detail & Related papers (2024-07-19T18:28:13Z) - Uncovering Prototypical Knowledge for Weakly Open-Vocabulary Semantic
Segmentation [59.37587762543934]
This paper studies the problem of weakly open-vocabulary semantic segmentation (WOVSS)
Existing methods suffer from a granularity inconsistency regarding the usage of group tokens.
We propose the prototypical guidance network (PGSeg) that incorporates multi-modal regularization.
arXiv Detail & Related papers (2023-10-29T13:18:00Z) - Modeling the Q-Diversity in a Min-max Play Game for Robust Optimization [61.39201891894024]
Group distributionally robust optimization (group DRO) can minimize the worst-case loss over pre-defined groups.
We reformulate the group DRO framework by proposing Q-Diversity.
Characterized by an interactive training mode, Q-Diversity relaxes the group identification from annotation into direct parameterization.
arXiv Detail & Related papers (2023-05-20T07:02:27Z) - AggNet: Learning to Aggregate Faces for Group Membership Verification [20.15673797674449]
In some face recognition applications, we are interested to verify whether an individual is a member of a group, without revealing their identity.
Some existing methods, propose a mechanism for quantizing precomputed face descriptors into discrete embeddings and aggregating them into one group representation.
We propose a deep architecture that jointly learns face descriptors and the aggregation mechanism for better end-to-end performances.
arXiv Detail & Related papers (2022-06-17T10:48:34Z) - Towards Group Robustness in the presence of Partial Group Labels [61.33713547766866]
spurious correlations between input samples and the target labels wrongly direct the neural network predictions.
We propose an algorithm that optimize for the worst-off group assignments from a constraint set.
We show improvements in the minority group's performance while preserving overall aggregate accuracy across groups.
arXiv Detail & Related papers (2022-01-10T22:04:48Z) - Focus on the Common Good: Group Distributional Robustness Follows [47.62596240492509]
This paper proposes a new and simple algorithm that explicitly encourages learning of features that are shared across various groups.
While Group-DRO focuses on groups with worst regularized loss, focusing instead, on groups that enable better performance even on other groups, could lead to learning of shared/common features.
arXiv Detail & Related papers (2021-10-06T09:47:41Z) - Learning Multi-Attention Context Graph for Group-Based Re-Identification [214.84551361855443]
Learning to re-identify or retrieve a group of people across non-overlapped camera systems has important applications in video surveillance.
In this work, we consider employing context information for identifying groups of people, i.e., group re-id.
We propose a novel unified framework based on graph neural networks to simultaneously address the group-based re-id tasks.
arXiv Detail & Related papers (2021-04-29T09:57:47Z) - Overcoming Data Sparsity in Group Recommendation [52.00998276970403]
Group recommender systems should be able to accurately learn not only users' personal preferences but also preference aggregation strategy.
In this paper, we take Bipartite Graphding Model (BGEM), the self-attention mechanism and Graph Convolutional Networks (GCNs) as basic building blocks to learn group and user representations in a unified way.
arXiv Detail & Related papers (2020-10-02T07:11:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.