Do we really have to filter out random noise in pre-training data for language models?
- URL: http://arxiv.org/abs/2502.06604v1
- Date: Mon, 10 Feb 2025 16:01:55 GMT
- Title: Do we really have to filter out random noise in pre-training data for language models?
- Authors: Jinghan Ru, Yuxin Xie, Xianwei Zhuang, Yuguo Yin, Yuexian Zou,
- Abstract summary: Pre-training text data curated from the internet inevitably contains random noise caused by decoding errors or unregulated web content.
We provide a theoretical justification for this phenomenon, which also elucidates the success of multilingual models.
Experiments show that the model's performance in downstream tasks is not based solely on the NTP loss, which means that random noise may result in degraded downstream performance.
We introduce a novel plug-and-play Local Gradient Matching loss, which explicitly enhances the denoising capability of the downstream task head.
- Score: 42.966566701950164
- License:
- Abstract: Web-scale pre-training datasets are the cornerstone of LLMs' success. However, text data curated from the internet inevitably contains random noise caused by decoding errors or unregulated web content. In contrast to previous works that focus on low quality or synthetic data, our study \textbf{provides the first systematic investigation into such random noise through a cohesive ``What-Why-How'' framework.} Surprisingly, we observed that the resulting increase in next-token prediction (NTP) loss was significantly lower than the proportion of random noise. We provide a theoretical justification for this phenomenon, which also elucidates the success of multilingual models. On the other hand, experiments show that the model's performance in downstream tasks is not based solely on the NTP loss, which means that random noise may result in degraded downstream performance. To address the potential adverse effects, we introduce a novel plug-and-play Local Gradient Matching loss, which explicitly enhances the denoising capability of the downstream task head by aligning the gradient of normal and perturbed features without requiring knowledge of the model's parameters. Additional experiments on 8 language and 14 vision benchmarks further validate its effectiveness.
Related papers
- RobustFT: Robust Supervised Fine-tuning for Large Language Models under Noisy Response [23.45168175163634]
Supervised fine-tuning (SFT) plays a crucial role in adapting large language models (LLMs) to specific domains or tasks.
We introduce a robust SFT framework (RobustFT) that performs noise detection and relabeling on downstream task data.
Extensive experiments conducted on multiple LLMs across five datasets demonstrate RobustFT's exceptional performance in noisy scenarios.
arXiv Detail & Related papers (2024-12-19T15:00:18Z) - Learning with Noisy Foundation Models [95.50968225050012]
This paper is the first work to comprehensively understand and analyze the nature of noise in pre-training datasets.
We propose a tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise and improve generalization.
arXiv Detail & Related papers (2024-03-11T16:22:41Z) - Understanding and Mitigating the Label Noise in Pre-training on
Downstream Tasks [91.15120211190519]
This paper aims to understand the nature of noise in pre-training datasets and to mitigate its impact on downstream tasks.
We propose a light-weight black-box tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise.
arXiv Detail & Related papers (2023-09-29T06:18:15Z) - Improving the Robustness of Summarization Models by Detecting and
Removing Input Noise [50.27105057899601]
We present a large empirical study quantifying the sometimes severe loss in performance from different types of input noise for a range of datasets and model sizes.
We propose a light-weight method for detecting and removing such noise in the input during model inference without requiring any training, auxiliary models, or even prior knowledge of the type of noise.
arXiv Detail & Related papers (2022-12-20T00:33:11Z) - Improving Pre-trained Language Model Fine-tuning with Noise Stability
Regularization [94.4409074435894]
We propose a novel and effective fine-tuning framework, named Layerwise Noise Stability Regularization (LNSR)
Specifically, we propose to inject the standard Gaussian noise and regularize hidden representations of the fine-tuned model.
We demonstrate the advantages of the proposed method over other state-of-the-art algorithms including L2-SP, Mixout and SMART.
arXiv Detail & Related papers (2022-06-12T04:42:49Z) - Bridging the Gap Between Clean Data Training and Real-World Inference
for Spoken Language Understanding [76.89426311082927]
Existing models are trained on clean data, which causes a textitgap between clean data training and real-world inference.
We propose a method from the perspective of domain adaptation, by which both high- and low-quality samples are embedding into similar vector space.
Experiments on the widely-used dataset, Snips, and large scale in-house dataset (10 million training examples) demonstrate that this method not only outperforms the baseline models on real-world (noisy) corpus but also enhances the robustness, that is, it produces high-quality results under a noisy environment.
arXiv Detail & Related papers (2021-04-13T17:54:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.