Evaluation of Deep Audio Representations for Hearables
- URL: http://arxiv.org/abs/2502.06664v1
- Date: Mon, 10 Feb 2025 16:51:11 GMT
- Title: Evaluation of Deep Audio Representations for Hearables
- Authors: Fabian Gröger, Pascal Baumann, Ludovic Amruthalingam, Laurent Simon, Ruksana Giurda, Simone Lionetti,
- Abstract summary: This dataset includes 1,158 audio tracks, each 30 seconds long, created by spatially mixing proprietary monologues with high-quality recordings of everyday acoustic scenes.
Our benchmark encompasses eight tasks that assess the general context, speech sources, and technical acoustic properties of the audio scenes.
This superiority underscores the advantage of models trained on diverse audio collections, confirming their applicability to a wide array of auditory tasks, including encoding the environment properties necessary for hearable steering.
- Score: 1.5646349560044959
- License:
- Abstract: Effectively steering hearable devices requires understanding the acoustic environment around the user. In the computational analysis of sound scenes, foundation models have emerged as the state of the art to produce high-performance, robust, multi-purpose audio representations. We introduce and release Deep Evaluation of Audio Representations (DEAR), the first dataset and benchmark to evaluate the efficacy of foundation models in capturing essential acoustic properties for hearables. The dataset includes 1,158 audio tracks, each 30 seconds long, created by spatially mixing proprietary monologues with commercial, high-quality recordings of everyday acoustic scenes. Our benchmark encompasses eight tasks that assess the general context, speech sources, and technical acoustic properties of the audio scenes. Through our evaluation of four general-purpose audio representation models, we demonstrate that the BEATs model significantly surpasses its counterparts. This superiority underscores the advantage of models trained on diverse audio collections, confirming their applicability to a wide array of auditory tasks, including encoding the environment properties necessary for hearable steering. The DEAR dataset and associated code are available at https://dear-dataset.github.io.
Related papers
- Can Large Audio-Language Models Truly Hear? Tackling Hallucinations with Multi-Task Assessment and Stepwise Audio Reasoning [55.2480439325792]
Large audio-language models (LALMs) have shown impressive capabilities in understanding and reasoning about audio and speech information.
These models still face challenges, including hallucinating non-existent sound events, misidentifying the order of sound events, and incorrectly attributing sound sources.
arXiv Detail & Related papers (2024-10-21T15:55:27Z) - AV-GS: Learning Material and Geometry Aware Priors for Novel View Acoustic Synthesis [62.33446681243413]
view acoustic synthesis aims to render audio at any target viewpoint, given a mono audio emitted by a sound source at a 3D scene.
Existing methods have proposed NeRF-based implicit models to exploit visual cues as a condition for synthesizing audio.
We propose a novel Audio-Visual Gaussian Splatting (AV-GS) model to characterize the entire scene environment.
Experiments validate the superiority of our AV-GS over existing alternatives on the real-world RWAS and simulation-based SoundSpaces datasets.
arXiv Detail & Related papers (2024-06-13T08:34:12Z) - AdVerb: Visually Guided Audio Dereverberation [49.958724234969445]
We present AdVerb, a novel audio-visual dereverberation framework.
It uses visual cues in addition to the reverberant sound to estimate clean audio.
arXiv Detail & Related papers (2023-08-23T18:20:59Z) - Self-Supervised Visual Acoustic Matching [63.492168778869726]
Acoustic matching aims to re-synthesize an audio clip to sound as if it were recorded in a target acoustic environment.
We propose a self-supervised approach to visual acoustic matching where training samples include only the target scene image and audio.
Our approach jointly learns to disentangle room acoustics and re-synthesize audio into the target environment, via a conditional GAN framework and a novel metric.
arXiv Detail & Related papers (2023-07-27T17:59:59Z) - Visually Informed Binaural Audio Generation without Binaural Audios [130.80178993441413]
We propose PseudoBinaural, an effective pipeline that is free of recordings.
We leverage spherical harmonic decomposition and head-related impulse response (HRIR) to identify the relationship between spatial locations and received audios.
Our-recording-free pipeline shows great stability in cross-dataset evaluation and achieves comparable performance under subjective preference.
arXiv Detail & Related papers (2021-04-13T13:07:33Z) - Data Fusion for Audiovisual Speaker Localization: Extending Dynamic
Stream Weights to the Spatial Domain [103.3388198420822]
Esting the positions of multiple speakers can be helpful for tasks like automatic speech recognition or speaker diarization.
This paper proposes a novel audiovisual data fusion framework for speaker localization by assigning individual dynamic stream weights to specific regions.
A performance evaluation using audiovisual recordings yields promising results, with the proposed fusion approach outperforming all baseline models.
arXiv Detail & Related papers (2021-02-23T09:59:31Z) - COALA: Co-Aligned Autoencoders for Learning Semantically Enriched Audio
Representations [32.456824945999465]
We propose a method for learning audio representations, aligning the learned latent representations of audio and associated tags.
We evaluate the quality of our embedding model, measuring its performance as a feature extractor on three different tasks.
arXiv Detail & Related papers (2020-06-15T13:17:18Z) - Large Scale Audiovisual Learning of Sounds with Weakly Labeled Data [9.072124914105325]
We present an audiovisual fusion model that learns to recognize sounds from weakly labeled video recordings.
Experiments on the large scale sound events dataset, AudioSet, demonstrate the efficacy of the proposed model.
arXiv Detail & Related papers (2020-05-29T01:30:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.