TEMSET-24K: Densely Annotated Dataset for Indexing Multipart Endoscopic Videos using Surgical Timeline Segmentation
- URL: http://arxiv.org/abs/2502.06708v1
- Date: Mon, 10 Feb 2025 17:37:34 GMT
- Title: TEMSET-24K: Densely Annotated Dataset for Indexing Multipart Endoscopic Videos using Surgical Timeline Segmentation
- Authors: Muhammad Bilal, Mahmood Alam, Deepa Bapu, Stephan Korsgen, Neeraj Lal, Simon Bach, Amir M Hajivanand, Muhammed Ali, Kamran Soomro, Iqbal Qasim, Paweł Capik, Aslam Khan, Zaheer Khan, Hunaid Vohra, Massimo Caputo, Andrew Beggs, Adnan Qayyum, Junaid Qadir, Shazad Ashraf,
- Abstract summary: Current video analytics rely on manual indexing, a time-consuming process.
We present TEMSET-24K, an open-source dataset comprising 24,306 trans-anal endoscopic microsurgery (TEMS) video microclips.
Each clip is meticulously annotated by clinical experts using a novel hierarchical labeling taxonomy.
- Score: 2.9776992449863613
- License:
- Abstract: Indexing endoscopic surgical videos is vital in surgical data science, forming the basis for systematic retrospective analysis and clinical performance evaluation. Despite its significance, current video analytics rely on manual indexing, a time-consuming process. Advances in computer vision, particularly deep learning, offer automation potential, yet progress is limited by the lack of publicly available, densely annotated surgical datasets. To address this, we present TEMSET-24K, an open-source dataset comprising 24,306 trans-anal endoscopic microsurgery (TEMS) video micro-clips. Each clip is meticulously annotated by clinical experts using a novel hierarchical labeling taxonomy encompassing phase, task, and action triplets, capturing intricate surgical workflows. To validate this dataset, we benchmarked deep learning models, including transformer-based architectures. Our in silico evaluation demonstrates high accuracy (up to 0.99) and F1 scores (up to 0.99) for key phases like Setup and Suturing. The STALNet model, tested with ConvNeXt, ViT, and SWIN V2 encoders, consistently segmented well-represented phases. TEMSET-24K provides a critical benchmark, propelling state-of-the-art solutions in surgical data science.
Related papers
- SASVi - Segment Any Surgical Video [2.330834737588252]
We propose SASVi, a novel re-prompting mechanism based on a frame-wise Mask R-CNN Overseer model.
This model automatically re-prompts the foundation model SAM2 when the scene constellation changes.
arXiv Detail & Related papers (2025-02-12T00:29:41Z) - VISAGE: Video Synthesis using Action Graphs for Surgery [34.21344214645662]
We introduce the novel task of future video generation in laparoscopic surgery.
Our proposed method, VISAGE, leverages the power of action scene graphs to capture the sequential nature of laparoscopic procedures.
Results of our experiments demonstrate high-fidelity video generation for laparoscopy procedures.
arXiv Detail & Related papers (2024-10-23T10:28:17Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - Dynamic Scene Graph Representation for Surgical Video [37.22552586793163]
We exploit scene graphs as a more holistic, semantically meaningful and human-readable way to represent surgical videos.
We create a scene graph dataset from semantic segmentations from the CaDIS and CATARACTS datasets.
We demonstrate the benefits of surgical scene graphs regarding the explainability and robustness of model decisions.
arXiv Detail & Related papers (2023-09-25T21:28:14Z) - Hierarchical Semi-Supervised Learning Framework for Surgical Gesture
Segmentation and Recognition Based on Multi-Modality Data [2.8770761243361593]
We develop a hierarchical semi-supervised learning framework for surgical gesture segmentation using multi-modality data.
A Transformer-based network with a pre-trained ResNet-18' backbone is used to extract visual features from the surgical operation videos.
The proposed approach has been evaluated using data from the publicly available JIGS database, including Suturing, Needle Passing, and Knot Tying tasks.
arXiv Detail & Related papers (2023-07-31T21:17:59Z) - AutoLaparo: A New Dataset of Integrated Multi-tasks for Image-guided
Surgical Automation in Laparoscopic Hysterectomy [42.20922574566824]
We present and release the first integrated dataset with multiple image-based perception tasks to facilitate learning-based automation in hysterectomy surgery.
Our AutoLaparo dataset is developed based on full-length videos of entire hysterectomy procedures.
Specifically, three different yet highly correlated tasks are formulated in the dataset, including surgical workflow recognition, laparoscope motion prediction, and instrument and key anatomy segmentation.
arXiv Detail & Related papers (2022-08-03T13:17:23Z) - Pseudo-label Guided Cross-video Pixel Contrast for Robotic Surgical
Scene Segmentation with Limited Annotations [72.15956198507281]
We propose PGV-CL, a novel pseudo-label guided cross-video contrast learning method to boost scene segmentation.
We extensively evaluate our method on a public robotic surgery dataset EndoVis18 and a public cataract dataset CaDIS.
arXiv Detail & Related papers (2022-07-20T05:42:19Z) - Dissecting Self-Supervised Learning Methods for Surgical Computer Vision [51.370873913181605]
Self-Supervised Learning (SSL) methods have begun to gain traction in the general computer vision community.
The effectiveness of SSL methods in more complex and impactful domains, such as medicine and surgery, remains limited and unexplored.
We present an extensive analysis of the performance of these methods on the Cholec80 dataset for two fundamental and popular tasks in surgical context understanding, phase recognition and tool presence detection.
arXiv Detail & Related papers (2022-07-01T14:17:11Z) - Relational Graph Learning on Visual and Kinematics Embeddings for
Accurate Gesture Recognition in Robotic Surgery [84.73764603474413]
We propose a novel online approach of multi-modal graph network (i.e., MRG-Net) to dynamically integrate visual and kinematics information.
The effectiveness of our method is demonstrated with state-of-the-art results on the public JIGSAWS dataset.
arXiv Detail & Related papers (2020-11-03T11:00:10Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - LRTD: Long-Range Temporal Dependency based Active Learning for Surgical
Workflow Recognition [67.86810761677403]
We propose a novel active learning method for cost-effective surgical video analysis.
Specifically, we propose a non-local recurrent convolutional network (NL-RCNet), which introduces non-local block to capture the long-range temporal dependency.
We validate our approach on a large surgical video dataset (Cholec80) by performing surgical workflow recognition task.
arXiv Detail & Related papers (2020-04-21T09:21:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.