Fat-Tree QRAM: A High-Bandwidth Shared Quantum Random Access Memory for Parallel Queries
- URL: http://arxiv.org/abs/2502.06767v1
- Date: Mon, 10 Feb 2025 18:47:16 GMT
- Title: Fat-Tree QRAM: A High-Bandwidth Shared Quantum Random Access Memory for Parallel Queries
- Authors: Shifan Xu, Alvin Lu, Yongshan Ding,
- Abstract summary: We introduce Fat-Tree QRAM, a novel query architecture capable of pipelining multiple quantum queries simultaneously.
Fat-Tree QRAM performs $O(log (N))$ independent queries in $O(log (N))$ time using $O(N)$ qubits.
- Score: 0.6976976250169952
- License:
- Abstract: Quantum Random Access Memory (QRAM) is a crucial architectural component for querying classical or quantum data in superposition, enabling algorithms with wide-ranging applications in quantum arithmetic, quantum chemistry, machine learning, and quantum cryptography. In this work, we introduce Fat-Tree QRAM, a novel query architecture capable of pipelining multiple quantum queries simultaneously while maintaining desirable scalings in query speed and fidelity. Specifically, Fat-Tree QRAM performs $O(\log (N))$ independent queries in $O(\log (N))$ time using $O(N)$ qubits, offering immense parallelism benefits over traditional QRAM architectures. To demonstrate its experimental feasibility, we propose modular and on-chip implementations of Fat-Tree QRAM based on superconducting circuits and analyze their performance and fidelity under realistic parameters. Furthermore, a query scheduling protocol is presented to maximize hardware utilization and access the underlying data at an optimal rate. These results suggest that Fat-Tree QRAM is an attractive architecture in a shared memory system for practical quantum computing.
Related papers
- QuantumReservoirPy: A Software Package for Time Series Prediction [44.99833362998488]
We have developed a software package to allow for quantum reservoirs to fit a common structure.
Our package results in simplified development and logical methods of comparison between quantum reservoir architectures.
arXiv Detail & Related papers (2024-01-19T13:31:29Z) - Systems Architecture for Quantum Random Access Memory [0.6386668251980657]
Quantum random access memory (QRAM) is a promising architecture for realizing quantum queries.
We show how to leverage the intrinsic biased-noise resilience of the proposed QRAM for implementation on either Noisy Intermediate-Scale Quantum (NISQ) or Fault-Tolerant Quantum Computing (FTQC) hardware.
arXiv Detail & Related papers (2023-06-05T20:52:28Z) - QRAM: A Survey and Critique [1.52292571922932]
Quantum random-access memory (QRAM) is a mechanism to access data based on addresses which are themselves a quantum state.
We use two primary categories of QRAM from the literature: active and passive.
In summary, we conclude that cheap, scalableally passive QRAM is unlikely with existing proposals.
arXiv Detail & Related papers (2023-05-17T15:48:48Z) - Quantum Random Access Memory For Dummies [4.608607664709314]
Quantum Random Access Memory (QRAM) has the potential to revolutionize the area of quantum computing.
QRAM uses quantum computing principles to store and modify quantum or classical data efficiently.
arXiv Detail & Related papers (2023-05-02T03:24:16Z) - Approximate Quantum Random Access Memory Architectures [7.509129971169722]
Quantum supremacy in many applications using well-known quantum algorithms rely on availability of data in quantum format.
We propose an approximate Parametric Quantum Circuit (PQC) based QRAM which takes address lines as input and gives out the corresponding data in these address lines as the output.
We present two applications of the proposed PQC-based QRAM namely, storage of binary data and storage of machine learning (ML) dataset for classification.
arXiv Detail & Related papers (2022-10-24T19:53:28Z) - Resource-efficient simulation of noisy quantum circuits and application
to network-enabled QRAM optimization [0.7107001348724662]
We introduce a resource-efficient method for simulating large-scale noisy entanglement.
We analyze Chen et al.'s network-based QRAM as an application at the scale of quantum data centers or near-term quantum internet.
arXiv Detail & Related papers (2022-10-24T18:00:05Z) - Iterative Qubits Management for Quantum Index Searching in a Hybrid
System [56.39703478198019]
IQuCS aims at index searching and counting in a quantum-classical hybrid system.
We implement IQuCS with Qiskit and conduct intensive experiments.
Results demonstrate that it reduces qubits consumption by up to 66.2%.
arXiv Detail & Related papers (2022-09-22T21:54:28Z) - QSAN: A Near-term Achievable Quantum Self-Attention Network [73.15524926159702]
Self-Attention Mechanism (SAM) is good at capturing the internal connections of features.
A novel Quantum Self-Attention Network (QSAN) is proposed for image classification tasks on near-term quantum devices.
arXiv Detail & Related papers (2022-07-14T12:22:51Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
We quantify scaling of the expected resource requirements by optimized circuits for hardware architectures with varying levels of connectivity.
We show the number of measurements, and hence total time to synthesizing solution, grows exponentially in problem size and problem graph degree.
These problems may be alleviated by increasing hardware connectivity or by recently proposed modifications to the QAOA that achieve higher performance with fewer circuit layers.
arXiv Detail & Related papers (2022-01-06T21:02:30Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Parallelising the Queries in Bucket Brigade Quantum RAM [69.43216268165402]
Quantum algorithms often use quantum RAMs (QRAM) for accessing information stored in a database-like manner.
We show a systematic method to significantly reduce the effective query time by using Clifford+T gate parallelism.
We conclude that, in theory, fault-tolerant bucket brigade quantum RAM queries can be performed approximately with the speed of classical RAM.
arXiv Detail & Related papers (2020-02-21T14:50:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.