Survey on Vision-Language-Action Models
- URL: http://arxiv.org/abs/2502.06851v2
- Date: Sat, 15 Feb 2025 06:51:17 GMT
- Title: Survey on Vision-Language-Action Models
- Authors: Adilzhan Adilkhanov, Amir Yelenov, Assylkhan Seitzhanov, Ayan Mazhitov, Azamat Abdikarimov, Danissa Sandykbayeva, Daryn Kenzhebek, Dinmukhammed Mukashev, Ilyas Umurbekov, Jabrail Chumakov, Kamila Spanova, Karina Burunchina, Madina Yergibay, Margulan Issa, Moldir Zabirova, Nurdaulet Zhuzbay, Nurlan Kabdyshev, Nurlan Zhaniyar, Rasul Yermagambet, Rustam Chibar, Saltanat Seitzhan, Soibkhon Khajikhanov, Tasbolat Taunyazov, Temirlan Galimzhanov, Temirlan Kaiyrbay, Tleukhan Mussin, Togzhan Syrymova, Valeriya Kostyukova, Yerkebulan Massalim, Yermakhan Kassym, Zerde Nurbayeva, Zhanat Kappassov,
- Abstract summary: This work does not represent original research, but highlights how AI can help automate literature reviews.
Future research will focus on developing a structured framework for AI-assisted literature reviews.
- Score: 0.2636873872510828
- License:
- Abstract: This paper presents an AI-generated review of Vision-Language-Action (VLA) models, summarizing key methodologies, findings, and future directions. The content is produced using large language models (LLMs) and is intended only for demonstration purposes. This work does not represent original research, but highlights how AI can help automate literature reviews. As AI-generated content becomes more prevalent, ensuring accuracy, reliability, and proper synthesis remains a challenge. Future research will focus on developing a structured framework for AI-assisted literature reviews, exploring techniques to enhance citation accuracy, source credibility, and contextual understanding. By examining the potential and limitations of LLM in academic writing, this study aims to contribute to the broader discussion of integrating AI into research workflows. This work serves as a preliminary step toward establishing systematic approaches for leveraging AI in literature review generation, making academic knowledge synthesis more efficient and scalable.
Related papers
- Large Language Model for Qualitative Research -- A Systematic Mapping Study [3.302912592091359]
Large Language Models (LLMs), powered by advanced generative AI, have emerged as transformative tools.
This study systematically maps the literature on the use of LLMs for qualitative research.
Findings reveal that LLMs are utilized across diverse fields, demonstrating the potential to automate processes.
arXiv Detail & Related papers (2024-11-18T21:28:00Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
Retrieval-enhancement can be extended to a broader spectrum of machine learning (ML)
This work introduces a formal framework of this paradigm, Retrieval-Enhanced Machine Learning (REML), by synthesizing the literature in various domains in ML with consistent notations which is missing from the current literature.
The goal of this work is to equip researchers across various disciplines with a comprehensive, formally structured framework of retrieval-enhanced models, thereby fostering interdisciplinary future research.
arXiv Detail & Related papers (2024-07-17T20:01:21Z) - Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
Article explores the convergence of connectionist and symbolic artificial intelligence (AI)
Traditionally, connectionist AI focuses on neural networks, while symbolic AI emphasizes symbolic representation and logic.
Recent advancements in large language models (LLMs) highlight the potential of connectionist architectures in handling human language as a form of symbols.
arXiv Detail & Related papers (2024-07-11T14:00:53Z) - Who Writes the Review, Human or AI? [0.36498648388765503]
This study proposes a methodology to accurately distinguish AI-generated and human-written book reviews.
Our approach utilizes transfer learning, enabling the model to identify generated text across different topics.
The experimental results demonstrate that it is feasible to detect the original source of text, achieving an accuracy rate of 96.86%.
arXiv Detail & Related papers (2024-05-30T17:38:44Z) - Generative Artificial Intelligence: A Systematic Review and Applications [7.729155237285151]
This paper documents the systematic review and analysis of recent advancements and techniques in Generative AI.
The major impact that generative AI has made to date, has been in language generation with the development of large language models.
The paper ends with a discussion of Responsible AI principles, and the necessary ethical considerations for the sustainability and growth of these generative models.
arXiv Detail & Related papers (2024-05-17T18:03:59Z) - Techniques for supercharging academic writing with generative AI [0.0]
This Perspective maps out principles and methods for using generative artificial intelligence (AI) to elevate the quality and efficiency of academic writing.
We introduce a human-AI collaborative framework that delineates the rationale (why), process (how), and nature (what) of AI engagement in writing.
arXiv Detail & Related papers (2023-10-26T04:35:00Z) - Towards Possibilities & Impossibilities of AI-generated Text Detection:
A Survey [97.33926242130732]
Large Language Models (LLMs) have revolutionized the domain of natural language processing (NLP) with remarkable capabilities of generating human-like text responses.
Despite these advancements, several works in the existing literature have raised serious concerns about the potential misuse of LLMs.
To address these concerns, a consensus among the research community is to develop algorithmic solutions to detect AI-generated text.
arXiv Detail & Related papers (2023-10-23T18:11:32Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
The benefits, challenges and drawbacks of AI in this field are reviewed.
The use of data augmentation, explainable AI, and the integration of AI with traditional experimental methods are also discussed.
arXiv Detail & Related papers (2022-12-08T23:23:39Z) - Investigating Fairness Disparities in Peer Review: A Language Model
Enhanced Approach [77.61131357420201]
We conduct a thorough and rigorous study on fairness disparities in peer review with the help of large language models (LMs)
We collect, assemble, and maintain a comprehensive relational database for the International Conference on Learning Representations (ICLR) conference from 2017 to date.
We postulate and study fairness disparities on multiple protective attributes of interest, including author gender, geography, author, and institutional prestige.
arXiv Detail & Related papers (2022-11-07T16:19:42Z) - Application of Artificial Intelligence and Machine Learning in
Libraries: A Systematic Review [0.0]
The aim of this study is to provide a synthesis of empirical studies exploring application of artificial intelligence and machine learning in libraries.
Data was collected from Web of Science, Scopus, LISA and LISTA databases.
Findings show that the current state of the AI and ML research that is relevant with the LIS domain mainly focuses on theoretical works.
arXiv Detail & Related papers (2021-12-06T07:33:09Z) - Stakeholder Participation in AI: Beyond "Add Diverse Stakeholders and
Stir" [76.44130385507894]
This paper aims to ground what we dub a 'participatory turn' in AI design by synthesizing existing literature on participation and through empirical analysis of its current practices.
Based on our literature synthesis and empirical research, this paper presents a conceptual framework for analyzing participatory approaches to AI design.
arXiv Detail & Related papers (2021-11-01T17:57:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.