Gemstones: A Model Suite for Multi-Faceted Scaling Laws
- URL: http://arxiv.org/abs/2502.06857v1
- Date: Fri, 07 Feb 2025 18:09:38 GMT
- Title: Gemstones: A Model Suite for Multi-Faceted Scaling Laws
- Authors: Sean McLeish, John Kirchenbauer, David Yu Miller, Siddharth Singh, Abhinav Bhatele, Micah Goldblum, Ashwinee Panda, Tom Goldstein,
- Abstract summary: We release the Gemstones: the most comprehensive open-source scaling law dataset to date.
These models have been trained with different learning rates, schedules, and architectural shapes.
Our checkpoints enable more complex studies of scaling, such as a law that predicts language performance as a function of model width and depth.
- Score: 67.46133952358785
- License:
- Abstract: Scaling laws are typically fit using a family of models with a narrow range of frozen hyper-parameter choices. In this work we study scaling laws using a wide range of architecture and hyper-parameter choices, and highlight their impact on resulting prescriptions. As a primary artifact of our research, we release the Gemstones: the most comprehensive open-source scaling law dataset to date, consisting of over 4000 checkpoints from transformers with up to 2 billion parameters; these models have been trained with different learning rates, cooldown schedules, and architectural shapes. Our checkpoints enable more complex studies of scaling, such as a law that predicts language modeling performance as a function of model width and depth. By examining the various facets of our model suite, we find that the prescriptions of scaling laws can be highly sensitive to the experimental design process and the specific model checkpoints used during fitting. Code: https://github.com/mcleish7/gemstone-scaling-laws
Related papers
- A Hitchhiker's Guide to Scaling Law Estimation [56.06982415792523]
Scaling laws predict the loss of a target machine learning model by extrapolating from easier-to-train models with fewer parameters or smaller training sets.
We estimate more than 1000 scaling laws, then derive a set of best practices for estimating scaling laws in new model families.
arXiv Detail & Related papers (2024-10-15T17:59:10Z) - Scaling Laws Behind Code Understanding Model [4.846512516189021]
We study the scaling law for the code understanding task by varying training data, model size, and computing resource.
We train a large-scale code understanding model named CoLSBERT with 1.5B parameters on a large dataset using more computing resource, which outperforms previous work by a large margin.
arXiv Detail & Related papers (2024-02-20T08:31:42Z) - Mixtures of Experts Unlock Parameter Scaling for Deep RL [54.26191237981469]
In this paper, we demonstrate that incorporating Mixture-of-Expert (MoE) modules into value-based networks results in more parameter-scalable models.
This work thus provides strong empirical evidence towards developing scaling laws for reinforcement learning.
arXiv Detail & Related papers (2024-02-13T17:18:56Z) - The Languini Kitchen: Enabling Language Modelling Research at Different
Scales of Compute [66.84421705029624]
We introduce an experimental protocol that enables model comparisons based on equivalent compute, measured in accelerator hours.
We pre-process an existing large, diverse, and high-quality dataset of books that surpasses existing academic benchmarks in quality, diversity, and document length.
This work also provides two baseline models: a feed-forward model derived from the GPT-2 architecture and a recurrent model in the form of a novel LSTM with ten-fold throughput.
arXiv Detail & Related papers (2023-09-20T10:31:17Z) - nanoLM: an Affordable LLM Pre-training Benchmark via Accurate Loss Prediction across Scales [65.01417261415833]
We present an approach to predict the pre-training loss based on our observations that Maximal Update Parametrization (muP) enables accurate fitting of scaling laws.
With around 14% of the one-time pre-training cost, we can accurately forecast the loss for models up to 52B.
Our goal with nanoLM is to empower researchers with limited resources to reach meaningful conclusions on large models.
arXiv Detail & Related papers (2023-04-14T00:45:01Z) - Reproducible scaling laws for contrastive language-image learning [42.354402731615444]
We investigate scaling laws for contrastive language-image pre-training (CLIP) with the public LAION dataset and the open-source OpenCLIP repository.
Our large-scale experiments involve models trained on up to two billion image-text pairs and identify power law scaling for multiple downstream tasks.
We find that the training distribution plays a key role in scaling laws as the OpenAI and OpenCLIP models exhibit different scaling behavior despite identical model architectures.
arXiv Detail & Related papers (2022-12-14T10:24:50Z) - A Solvable Model of Neural Scaling Laws [72.8349503901712]
Large language models with a huge number of parameters, when trained on near internet-sized number of tokens, have been empirically shown to obey neural scaling laws.
We propose a statistical model -- a joint generative data model and random feature model -- that captures this neural scaling phenomenology.
Key findings are the manner in which the power laws that occur in the statistics of natural datasets are extended by nonlinear random feature maps.
arXiv Detail & Related papers (2022-10-30T15:13:18Z) - Understanding Scaling Laws for Recommendation Models [1.6283945233720964]
We study empirical scaling laws for DLRM style recommendation models, in particular Click-Through Rate (CTR)
We characterize scaling efficiency along three different resource dimensions, namely data, parameters and compute.
We show that parameter scaling is out of steam for the model architecture under study, and until a higher-performing model architecture emerges, data scaling is the path forward.
arXiv Detail & Related papers (2022-08-17T19:13:17Z) - Scaling Laws Under the Microscope: Predicting Transformer Performance
from Small Scale Experiments [42.793379799720434]
We investigate whether scaling laws can be used to accelerate model development.
We find that scaling laws emerge at finetuning time in some NLP tasks.
For tasks where scaling laws exist, they can be used to predict the performance of larger models.
arXiv Detail & Related papers (2022-02-13T19:13:00Z) - Is the Number of Trainable Parameters All That Actually Matters? [2.624902795082451]
We investigate ways to tentatively cheat scaling laws, and train larger models for cheaper.
We find that the scaling relationship between test loss and compute depends only on the actual number of trainable parameters.
arXiv Detail & Related papers (2021-09-24T12:43:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.