Secure Visual Data Processing via Federated Learning
- URL: http://arxiv.org/abs/2502.06889v1
- Date: Sun, 09 Feb 2025 09:44:18 GMT
- Title: Secure Visual Data Processing via Federated Learning
- Authors: Pedro Santos, Tânia Carvalho, Filipe Magalhães, Luís Antunes,
- Abstract summary: This paper addresses the need for privacy-preserving solutions in large-scale visual data processing.
We propose a new approach that combines object detection, federated learning and anonymization.
Our solution is evaluated against traditional centralized models, showing that while there is a slight trade-off in accuracy, the privacy benefits are substantial.
- Score: 2.4374097382908477
- License:
- Abstract: As the demand for privacy in visual data management grows, safeguarding sensitive information has become a critical challenge. This paper addresses the need for privacy-preserving solutions in large-scale visual data processing by leveraging federated learning. Although there have been developments in this field, previous research has mainly focused on integrating object detection with either anonymization or federated learning. However, these pairs often fail to address complex privacy concerns. On the one hand, object detection with anonymization alone can be vulnerable to reverse techniques. On the other hand, federated learning may not provide sufficient privacy guarantees. Therefore, we propose a new approach that combines object detection, federated learning and anonymization. Combining these three components aims to offer a robust privacy protection strategy by addressing different vulnerabilities in visual data. Our solution is evaluated against traditional centralized models, showing that while there is a slight trade-off in accuracy, the privacy benefits are substantial, making it well-suited for privacy sensitive applications.
Related papers
- Activity Recognition on Avatar-Anonymized Datasets with Masked Differential Privacy [64.32494202656801]
Privacy-preserving computer vision is an important emerging problem in machine learning and artificial intelligence.
We present anonymization pipeline that replaces sensitive human subjects in video datasets with synthetic avatars within context.
We also proposeMaskDP to protect non-anonymized but privacy sensitive background information.
arXiv Detail & Related papers (2024-10-22T15:22:53Z) - Privacy-Preserving Deep Learning Using Deformable Operators for Secure Task Learning [14.187385349716518]
Existing methods for privacy preservation rely on image encryption or perceptual transformation approaches.
We propose a novel Privacy-Preserving framework that uses a set of deformable operators for secure task learning.
arXiv Detail & Related papers (2024-04-08T19:46:20Z) - Privacy-preserving Optics for Enhancing Protection in Face De-identification [60.110274007388135]
We propose a hardware-level face de-identification method to solve this vulnerability.
We also propose an anonymization framework that generates a new face using the privacy-preserving image, face heatmap, and a reference face image from a public dataset as input.
arXiv Detail & Related papers (2024-03-31T19:28:04Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
Data with privacy concerns comes with stringent regulations that frequently prohibited data access and data sharing.
Overcoming these obstacles is key for technological progress in many real-world application scenarios that involve privacy sensitive data.
Differentially private (DP) data publishing provides a compelling solution, where only a sanitized form of the data is publicly released.
arXiv Detail & Related papers (2023-09-27T14:38:16Z) - Diff-Privacy: Diffusion-based Face Privacy Protection [58.1021066224765]
In this paper, we propose a novel face privacy protection method based on diffusion models, dubbed Diff-Privacy.
Specifically, we train our proposed multi-scale image inversion module (MSI) to obtain a set of SDM format conditional embeddings of the original image.
Based on the conditional embeddings, we design corresponding embedding scheduling strategies and construct different energy functions during the denoising process to achieve anonymization and visual identity information hiding.
arXiv Detail & Related papers (2023-09-11T09:26:07Z) - Vision Through the Veil: Differential Privacy in Federated Learning for
Medical Image Classification [15.382184404673389]
The proliferation of deep learning applications in healthcare calls for data aggregation across various institutions.
Privacy-preserving mechanisms are paramount in medical image analysis, where the data being sensitive in nature.
This study addresses the need by integrating differential privacy, a leading privacy-preserving technique, into a federated learning framework for medical image classification.
arXiv Detail & Related papers (2023-06-30T16:48:58Z) - On the Privacy Effect of Data Enhancement via the Lens of Memorization [20.63044895680223]
We propose to investigate privacy from a new perspective called memorization.
Through the lens of memorization, we find that previously deployed MIAs produce misleading results as they are less likely to identify samples with higher privacy risks.
We demonstrate that the generalization gap and privacy leakage are less correlated than those of the previous results.
arXiv Detail & Related papers (2022-08-17T13:02:17Z) - SPAct: Self-supervised Privacy Preservation for Action Recognition [73.79886509500409]
Existing approaches for mitigating privacy leakage in action recognition require privacy labels along with the action labels from the video dataset.
Recent developments of self-supervised learning (SSL) have unleashed the untapped potential of the unlabeled data.
We present a novel training framework which removes privacy information from input video in a self-supervised manner without requiring privacy labels.
arXiv Detail & Related papers (2022-03-29T02:56:40Z) - Privacy-preserving Object Detection [52.77024349608834]
We show that for object detection on COCO, both anonymizing the dataset by blurring faces, as well as swapping faces in a balanced manner along the gender and skin tone dimension, can retain object detection performances while preserving privacy and partially balancing bias.
arXiv Detail & Related papers (2021-03-11T10:34:54Z) - Differentially private cross-silo federated learning [16.38610531397378]
Strict privacy is of paramount importance in distributed machine learning.
In this paper we combine additively homomorphic secure summation protocols with differential privacy in the so-called cross-silo federated learning setting.
We demonstrate that our proposed solutions give prediction accuracy that is comparable to the non-distributed setting.
arXiv Detail & Related papers (2020-07-10T18:15:10Z) - SPEED: Secure, PrivatE, and Efficient Deep learning [2.283665431721732]
We introduce a deep learning framework able to deal with strong privacy constraints.
Based on collaborative learning, differential privacy and homomorphic encryption, the proposed approach advances state-of-the-art.
arXiv Detail & Related papers (2020-06-16T19:31:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.