GraNNite: Enabling High-Performance Execution of Graph Neural Networks on Resource-Constrained Neural Processing Units
- URL: http://arxiv.org/abs/2502.06921v2
- Date: Thu, 13 Feb 2025 02:05:21 GMT
- Title: GraNNite: Enabling High-Performance Execution of Graph Neural Networks on Resource-Constrained Neural Processing Units
- Authors: Arghadip Das, Shamik Kundu, Arnab Raha, Soumendu Ghosh, Deepak Mathaikutty, Vijay Raghunathan,
- Abstract summary: Graph Neural Networks (GNNs) are vital for learning from graph-structured data, enabling applications in network analysis, recommendation systems, and speech analytics.
GraNNite is the first hardware-aware framework optimizing GNN execution on commercial-off-the-shelf (COTS) SOTA accelerators.
- Score: 0.6063137165121326
- License:
- Abstract: Graph Neural Networks (GNNs) are vital for learning from graph-structured data, enabling applications in network analysis, recommendation systems, and speech analytics. Deploying them on edge devices like client PCs and laptops enhances real-time processing, privacy, and cloud independence. GNNs aid Retrieval-Augmented Generation (RAG) for Large Language Models (LLMs) and enable event-based vision tasks. However, irregular memory access, sparsity, and dynamic structures cause high latency and energy overhead on resource-constrained devices. While modern edge processors integrate CPUs, GPUs, and NPUs, NPUs designed for data-parallel tasks struggle with irregular GNN computations. We introduce GraNNite, the first hardware-aware framework optimizing GNN execution on commercial-off-the-shelf (COTS) SOTA DNN accelerators via a structured three-step methodology: (1) enabling NPU execution, (2) optimizing performance, and (3) trading accuracy for efficiency gains. Step 1 employs GraphSplit for workload distribution and StaGr for static aggregation, while GrAd and NodePad handle dynamic graphs. Step 2 boosts performance using EffOp for control-heavy tasks and GraSp for sparsity exploitation. Graph Convolution optimizations PreG, SymG, and CacheG reduce redundancy and memory transfers. Step 3 balances quality versus efficiency, where QuantGr applies INT8 quantization, and GrAx1, GrAx2, and GrAx3 accelerate attention, broadcast-add, and SAGE-max aggregation. On Intel Core Ultra AI PCs, GraNNite achieves 2.6X to 7.6X speedups over default NPU mappings and up to 8.6X energy gains over CPUs and GPUs, delivering 10.8X and 6.7X higher performance than CPUs and GPUs, respectively, across GNN models.
Related papers
- FusionLLM: A Decentralized LLM Training System on Geo-distributed GPUs with Adaptive Compression [55.992528247880685]
Decentralized training faces significant challenges regarding system design and efficiency.
We present FusionLLM, a decentralized training system designed and implemented for training large deep neural networks (DNNs)
We show that our system and method can achieve 1.45 - 9.39x speedup compared to baseline methods while ensuring convergence.
arXiv Detail & Related papers (2024-10-16T16:13:19Z) - Ev-Edge: Efficient Execution of Event-based Vision Algorithms on Commodity Edge Platforms [10.104371980353973]
Ev-Edge is a framework that contains three key optimizations to boost the performance of event-based vision systems on edge platforms.
On several state-of-art networks for a range of autonomous navigation tasks, Ev-Edge achieves 1.28x-2.05x improvements in latency and 1.23x-2.15x in energy.
arXiv Detail & Related papers (2024-03-23T04:44:55Z) - Graph Transformers for Large Graphs [57.19338459218758]
This work advances representation learning on single large-scale graphs with a focus on identifying model characteristics and critical design constraints.
A key innovation of this work lies in the creation of a fast neighborhood sampling technique coupled with a local attention mechanism.
We report a 3x speedup and 16.8% performance gain on ogbn-products and snap-patents, while we also scale LargeGT on ogbn-100M with a 5.9% performance improvement.
arXiv Detail & Related papers (2023-12-18T11:19:23Z) - Latency-aware Unified Dynamic Networks for Efficient Image Recognition [72.8951331472913]
LAUDNet is a framework to bridge the theoretical and practical efficiency gap in dynamic networks.
It integrates three primary dynamic paradigms-spatially adaptive computation, dynamic layer skipping, and dynamic channel skipping.
It can notably reduce the latency of models like ResNet by over 50% on platforms such as V100,3090, and TX2 GPUs.
arXiv Detail & Related papers (2023-08-30T10:57:41Z) - DistTGL: Distributed Memory-Based Temporal Graph Neural Network Training [18.52206409432894]
DistTGL is an efficient and scalable solution to train memory-based TGNNs on distributed GPU clusters.
In experiments, DistTGL achieves near-linear convergence speedup, outperforming state-of-the-art single-machine method by 14.5% in accuracy and 10.17x in training throughput.
arXiv Detail & Related papers (2023-07-14T22:52:27Z) - GHOST: A Graph Neural Network Accelerator using Silicon Photonics [4.226093500082746]
Graph neural networks (GNNs) have emerged as a powerful approach for modelling and learning from graph-structured data.
We present GHOST, the first silicon-photonic hardware accelerator for GNNs.
arXiv Detail & Related papers (2023-07-04T15:37:20Z) - Communication-Efficient Graph Neural Networks with Probabilistic
Neighborhood Expansion Analysis and Caching [59.8522166385372]
Training and inference with graph neural networks (GNNs) on massive graphs has been actively studied since the inception of GNNs.
This paper is concerned with minibatch training and inference with GNNs that employ node-wise sampling in distributed settings.
We present SALIENT++, which extends the prior state-of-the-art SALIENT system to work with partitioned feature data.
arXiv Detail & Related papers (2023-05-04T21:04:01Z) - Hardware/Software Co-Programmable Framework for Computational SSDs to
Accelerate Deep Learning Service on Large-Scale Graphs [8.698995648930806]
Graph neural networks (GNNs) process large-scale graphs consisting of a hundred billion edges.
We propose a novel deep learning framework on large graphs, HolisticGNN, that provides an easy-to-use, near-storage inference infrastructure for fast, energy-efficient GNN processing.
arXiv Detail & Related papers (2022-01-23T06:08:18Z) - GNNIE: GNN Inference Engine with Load-balancing and Graph-Specific
Caching [2.654276707313136]
GNNIE is an accelerator designed to run a broad range of Graph Neural Networks (GNNs)
It tackles workload imbalance by (i) splitting node feature operands into blocks, (ii) reordering and redistributing computations, and (iii) using a flexible MAC architecture with low communication overheads among the processing elements.
GNNIE achieves average speedups of over 8890x over a CPU and 295x over a GPU over multiple datasets on graph attention networks (GATs), graph convolutional networks (GCNs), GraphSAGE, GINConv, and DiffPool.
arXiv Detail & Related papers (2021-05-21T20:07:14Z) - DistGNN: Scalable Distributed Training for Large-Scale Graph Neural
Networks [58.48833325238537]
Full-batch training on Graph Neural Networks (GNN) to learn the structure of large graphs is a critical problem that needs to scale to hundreds of compute nodes to be feasible.
In this paper, we presentGNN that optimize the well-known Deep Graph Library (DGL) for full-batch training on CPU clusters.
Our results on four common GNN benchmark datasets show up to 3.7x speed-up using a single CPU socket and up to 97x speed-up using 128 CPU sockets.
arXiv Detail & Related papers (2021-04-14T08:46:35Z) - PatDNN: Achieving Real-Time DNN Execution on Mobile Devices with
Pattern-based Weight Pruning [57.20262984116752]
We introduce a new dimension, fine-grained pruning patterns inside the coarse-grained structures, revealing a previously unknown point in design space.
With the higher accuracy enabled by fine-grained pruning patterns, the unique insight is to use the compiler to re-gain and guarantee high hardware efficiency.
arXiv Detail & Related papers (2020-01-01T04:52:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.