GAS: Generative Avatar Synthesis from a Single Image
- URL: http://arxiv.org/abs/2502.06957v1
- Date: Mon, 10 Feb 2025 19:00:39 GMT
- Title: GAS: Generative Avatar Synthesis from a Single Image
- Authors: Yixing Lu, Junting Dong, Youngjoong Kwon, Qin Zhao, Bo Dai, Fernando De la Torre,
- Abstract summary: We introduce a generalizable and unified framework to synthesize view-consistent and temporally coherent avatars from a single image.
Our approach bridges this gap by combining the reconstruction power of regression-based 3D human reconstruction with the generative capabilities of a diffusion model.
- Score: 54.95198111659466
- License:
- Abstract: We introduce a generalizable and unified framework to synthesize view-consistent and temporally coherent avatars from a single image, addressing the challenging problem of single-image avatar generation. While recent methods employ diffusion models conditioned on human templates like depth or normal maps, they often struggle to preserve appearance information due to the discrepancy between sparse driving signals and the actual human subject, resulting in multi-view and temporal inconsistencies. Our approach bridges this gap by combining the reconstruction power of regression-based 3D human reconstruction with the generative capabilities of a diffusion model. The dense driving signal from the initial reconstructed human provides comprehensive conditioning, ensuring high-quality synthesis faithful to the reference appearance and structure. Additionally, we propose a unified framework that enables the generalization learned from novel pose synthesis on in-the-wild videos to naturally transfer to novel view synthesis. Our video-based diffusion model enhances disentangled synthesis with high-quality view-consistent renderings for novel views and realistic non-rigid deformations in novel pose animation. Results demonstrate the superior generalization ability of our method across in-domain and out-of-domain in-the-wild datasets. Project page: https://humansensinglab.github.io/GAS/
Related papers
- HumanGif: Single-View Human Diffusion with Generative Prior [25.516544735593087]
Motivated by the success of 2D character animation, we propose strong>HumanGif/strong>, a single-view human diffusion model with generative priors.
We formulate the single-view-based 3D human novel view and pose synthesis as a single-view-conditioned human diffusion process.
arXiv Detail & Related papers (2025-02-17T17:55:27Z) - Synthetic Prior for Few-Shot Drivable Head Avatar Inversion [61.51887011274453]
We present SynShot, a novel method for the few-shot inversion of a drivable head avatar based on a synthetic prior.
Inspired by machine learning models trained solely on synthetic data, we propose a method that learns a prior model from a large dataset of synthetic heads.
We model the head avatar using 3D Gaussian splatting and a convolutional encoder-decoder that outputs Gaussian parameters in UV texture space.
arXiv Detail & Related papers (2025-01-12T19:01:05Z) - MultiDiff: Consistent Novel View Synthesis from a Single Image [60.04215655745264]
MultiDiff is a novel approach for consistent novel view synthesis of scenes from a single RGB image.
Our results demonstrate that MultiDiff outperforms state-of-the-art methods on the challenging, real-world datasets RealEstate10K and ScanNet.
arXiv Detail & Related papers (2024-06-26T17:53:51Z) - HyperHuman: Hyper-Realistic Human Generation with Latent Structural Diffusion [114.15397904945185]
We propose a unified framework, HyperHuman, that generates in-the-wild human images of high realism and diverse layouts.
Our model enforces the joint learning of image appearance, spatial relationship, and geometry in a unified network.
Our framework yields the state-of-the-art performance, generating hyper-realistic human images under diverse scenarios.
arXiv Detail & Related papers (2023-10-12T17:59:34Z) - Novel View Synthesis of Humans using Differentiable Rendering [50.57718384229912]
We present a new approach for synthesizing novel views of people in new poses.
Our synthesis makes use of diffuse Gaussian primitives that represent the underlying skeletal structure of a human.
Rendering these primitives gives results in a high-dimensional latent image, which is then transformed into an RGB image by a decoder network.
arXiv Detail & Related papers (2023-03-28T10:48:33Z) - GM-NeRF: Learning Generalizable Model-based Neural Radiance Fields from
Multi-view Images [79.39247661907397]
We introduce an effective framework Generalizable Model-based Neural Radiance Fields to synthesize free-viewpoint images.
Specifically, we propose a geometry-guided attention mechanism to register the appearance code from multi-view 2D images to a geometry proxy.
arXiv Detail & Related papers (2023-03-24T03:32:02Z) - Human View Synthesis using a Single Sparse RGB-D Input [16.764379184593256]
We present a novel view synthesis framework to generate realistic renders from unseen views of any human captured from a single-view sensor with sparse RGB-D.
An enhancer network leverages the overall fidelity, even in occluded areas from the original view, producing crisp renders with fine details.
arXiv Detail & Related papers (2021-12-27T20:13:53Z) - Human Pose Manipulation and Novel View Synthesis using Differentiable
Rendering [46.04980667824064]
We present a new approach for synthesizing novel views of people in new poses.
Our synthesis makes use of diffuse Gaussian primitives that represent the underlying skeletal structure of a human.
Rendering these primitives gives results in a high-dimensional latent image, which is then transformed into an RGB image by a decoder network.
arXiv Detail & Related papers (2021-11-24T19:00:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.