Operation of a high-frequency, phase-slip qubit
- URL: http://arxiv.org/abs/2502.07043v1
- Date: Mon, 10 Feb 2025 21:22:24 GMT
- Title: Operation of a high-frequency, phase-slip qubit
- Authors: Cheeranjeev Purmessur, Kaicheung Chow, Bernard van Heck, Angela Kou,
- Abstract summary: We demonstrate the operation of a superconducting qubit based on a phase slip junction made using titanium nitride.
We perform readout and coherent control of the superconducting qubit, and measure qubit lifetimes.
Our results add the phase-slip junction as a tool for superconducting quantum information processing.
- Score: 0.0
- License:
- Abstract: Aluminum-based Josephson junctions are currently the main sources of nonlinearity for control and manipulation of superconducting qubits. A phase-slip junction, the dual of a Josephson junction, provides an alternative source of nonlinearity that promises new types of protected qubits and the possibility of high-temperature and high-frequency operation through the use of superconductors with larger energy gaps. Phase-slip junctions have been challenging, however, to incorporate into superconducting qubits because of difficulty controlling junction parameters. Here we demonstrate the operation of a superconducting qubit based on a phase slip junction made using titanium nitride. We operate the qubit at zero flux where the qubit frequency (~17 GHz) is mainly determined by the inductance of the qubit. We perform readout and coherent control of the superconducting qubit, and measure qubit lifetimes >60 $\mu$s. Finally, we demonstrate operation of the qubit at temperatures exceeding 300 mK. Our results add the phase-slip junction as a tool for superconducting quantum information processing and opens avenues for new classes of superconducting qubits.
Related papers
- Cavity-assisted quantum transduction between superconducting qubits and trapped atomic particles mediated by Rydberg levels [49.1574468325115]
We present an approach for transferring quantum states from superconducting qubits to the internal states of trapped atoms or ions.
For experimentally demonstrated parameters of interaction strengths, dissipation, and dephasing, our scheme achieves fidelities above 95%.
arXiv Detail & Related papers (2025-01-06T18:28:18Z) - Vortex-enabled Andreev processes in quantum Hall-superconductor hybrids [0.0]
We investigate transport through a proximitized integer quantum Hall edge.
By examining the downstream conductance, we identify regimes in which sub-gap vortex levels mediate Andreev processes.
We show that at finite temperature, and in the limit of a large number of vortices, the downstream conductance can average to zero, indicating that the superconductor effectively behaves like a normal contact.
arXiv Detail & Related papers (2022-07-21T18:00:15Z) - Coupled superconducting spin qubits with spin-orbit interaction [0.0]
Superconducting spin qubits, also known as Andreev spin qubits, promise to combine the benefits of superconducting qubits and spin qubits defined in quantum dots.
We show that superconducting spin qubits can be coupled to each other via the superconductor to implement two-qubit quantum gates.
We propose a scalable network of superconducting spin qubits which is suitable for implementing the surface code.
arXiv Detail & Related papers (2022-05-08T12:04:37Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Superconducting coupler with exponentially large on-off ratio [68.8204255655161]
Tunable two-qubit couplers offer an avenue to mitigate errors in multiqubit superconducting quantum processors.
Most couplers operate in a narrow frequency band and target specific couplings, such as the spurious $ZZ$ interaction.
We introduce a superconducting coupler that alleviates these limitations by suppressing all two-qubit interactions with an exponentially large on-off ratio.
arXiv Detail & Related papers (2021-07-21T03:03:13Z) - Geometric superinductance qubits: Controlling phase delocalization
across a single Josephson junction [0.0]
We present a large variety of qubits all stemming from the same circuit but with drastically different characteristic energy scales.
The use of a geometric inductor results in high precision of the inductive and capacitive energy as guaranteed by top-down lithography.
arXiv Detail & Related papers (2021-06-10T16:09:36Z) - Epitaxial Superconductor-Semiconductor Two-Dimensional Systems for
Superconducting Quantum Circuits [0.0]
Materials innovation and design breakthroughs have increased functionality and coherence of qubits substantially over the past two decades.
We show by improving interface between InAs as a semiconductor and Al as a superconductor, one can reliably fabricate voltage-controlled Josephson junction field effect transistor (JJ-FET)
We present the anharmonicity and coupling strengths from one and two-photon absorption in a quantum two level system fabricated with a JJ-FET.
arXiv Detail & Related papers (2021-03-26T19:09:59Z) - Quantum Sensors for Microscopic Tunneling Systems [58.720142291102135]
tunneling Two-Level-Systems (TLS) are important for micro-fabricated quantum devices such as superconducting qubits.
We present a method to characterize individual TLS in virtually arbitrary materials deposited as thin-films.
Our approach opens avenues for quantum material spectroscopy to investigate the structure of tunneling defects.
arXiv Detail & Related papers (2020-11-29T09:57:50Z) - Coherent superconducting qubits from a subtractive junction fabrication
process [48.7576911714538]
Josephson tunnel junctions are the centerpiece of almost any superconducting electronic circuit, including qubits.
In recent years, sub-micron scale overlap junctions have started to attract attention.
This work paves the way towards a more standardized process flow with advanced materials and growth processes, and constitutes an important step for large scale fabrication of superconducting quantum circuits.
arXiv Detail & Related papers (2020-06-30T14:52:14Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.