IRepair: An Intent-Aware Approach to Repair Data-Driven Errors in Large Language Models
- URL: http://arxiv.org/abs/2502.07072v2
- Date: Wed, 12 Feb 2025 05:14:41 GMT
- Title: IRepair: An Intent-Aware Approach to Repair Data-Driven Errors in Large Language Models
- Authors: Sayem Mohammad Imtiaz, Astha Singh, Fraol Batole, Hridesh Rajan,
- Abstract summary: Large language models (LLMs) are notoriously vulnerable to biases in their dataset, leading to issues such as toxicity.
In this paper, we introduce a novel dynamic slicing-based intent-aware LLM repair strategy, IRepair.
We show that IRepair repairs errors 43.6% more effectively while causing 46% less disruption to general performance.
- Score: 11.075423190298686
- License:
- Abstract: Not a day goes by without hearing about the impressive feats of large language models (LLMs), and equally, not a day passes without hearing about their challenges. LLMs are notoriously vulnerable to biases in their dataset, leading to issues such as toxicity. While domain-adaptive training has been employed to mitigate these issues, these techniques often address all model parameters indiscriminately during the repair process, resulting in poor repair quality and reduced model versatility. In this paper, we introduce a novel dynamic slicing-based intent-aware LLM repair strategy, IRepair. This approach selectively targets the most error-prone sections of the model for repair. Specifically, we propose dynamically slicing the model's most sensitive layers that require immediate attention, concentrating repair efforts on those areas. This method enables more effective repairs with potentially less impact on the model's overall performance by altering a smaller portion of the model. We evaluated our technique on three models from the GPT2 and GPT-Neo families, with parameters ranging from 800M to 1.6B, in a toxicity mitigation setup. Our results show that IRepair repairs errors 43.6% more effectively while causing 46% less disruption to general performance compared to the closest baseline, direct preference optimization. Our empirical analysis also reveals that errors are more concentrated in a smaller section of the model, with the top 20% of layers exhibiting 773% more error density than the remaining 80\%. This highlights the need for selective repair. Additionally, we demonstrate that a dynamic selection approach is essential for addressing errors dispersed throughout the model, ensuring a robust and efficient repair.
Related papers
- Fast and Interpretable Mixed-Integer Linear Program Solving by Learning Model Reduction [24.3088703166792]
This paper aims to learn a reduced and equivalent model of the original MILP as an intermediate step.
The reduced model often corresponds to interpretable operations and is much simpler, enabling us to solve large-scale MILP problems much faster than existing commercial solvers.
We introduce an attention mechanism to capture and represent preference information, which helps improve the performance of model reduction learning tasks.
arXiv Detail & Related papers (2024-12-31T06:50:42Z) - SuperCorrect: Supervising and Correcting Language Models with Error-Driven Insights [89.56181323849512]
We propose SuperCorrect, a framework that uses a large teacher model to supervise and correct both the reasoning and reflection processes of a smaller student model.
In the first stage, we extract hierarchical high-level and detailed thought templates from the teacher model to guide the student model in eliciting more fine-grained reasoning thoughts.
In the second stage, we introduce cross-model collaborative direct preference optimization (DPO) to enhance the self-correction abilities of the student model.
arXiv Detail & Related papers (2024-10-11T17:25:52Z) - Enhancing Training Data Attribution for Large Language Models with Fitting Error Consideration [74.09687562334682]
We introduce a novel training data attribution method called Debias and Denoise Attribution (DDA)
Our method significantly outperforms existing approaches, achieving an averaged AUC of 91.64%.
DDA exhibits strong generality and scalability across various sources and different-scale models like LLaMA2, QWEN2, and Mistral.
arXiv Detail & Related papers (2024-10-02T07:14:26Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - Low-rank finetuning for LLMs: A fairness perspective [54.13240282850982]
Low-rank approximation techniques have become the de facto standard for fine-tuning Large Language Models.
This paper investigates the effectiveness of these methods in capturing the shift of fine-tuning datasets from the initial pre-trained data distribution.
We show that low-rank fine-tuning inadvertently preserves undesirable biases and toxic behaviors.
arXiv Detail & Related papers (2024-05-28T20:43:53Z) - Teaching Language Models to Self-Improve through Interactive Demonstrations [83.9421355808174]
Self-improving ability of large language models has been shown to be absent and difficult to learn for smaller models.
We introduce TriPosT, a training algorithm that endows smaller models with such self-improvement ability.
We show that our approach can improve a LLaMA-7b's performance on math and reasoning tasks by up to 7.13%.
arXiv Detail & Related papers (2023-10-20T14:11:04Z) - Repairing Systematic Outliers by Learning Clean Subspaces in VAEs [31.298063226774115]
We propose Clean Subspace Vari Autoencoder (VAE), a novel semi-supervised model for detection and automated repair of systematic errors.
VAE is effective with much less labelled data compared to previous models, often with less than 2% of the data.
We provide experiments using three image datasets in scenarios with different levels of corruption and labelled set sizes.
arXiv Detail & Related papers (2022-07-17T01:28:23Z) - Complementary Ensemble Learning [1.90365714903665]
We derive a technique to improve performance of state-of-the-art deep learning models.
Specifically, we train auxiliary models which are able to complement state-of-the-art model uncertainty.
arXiv Detail & Related papers (2021-11-09T03:23:05Z) - Towards Practical Lipreading with Distilled and Efficient Models [57.41253104365274]
Lipreading has witnessed a lot of progress due to the resurgence of neural networks.
Recent works have placed emphasis on aspects such as improving performance by finding the optimal architecture or improving generalization.
There is still a significant gap between the current methodologies and the requirements for an effective deployment of lipreading in practical scenarios.
We propose a series of innovations that significantly bridge that gap: first, we raise the state-of-the-art performance by a wide margin on LRW and LRW-1000 to 88.5% and 46.6%, respectively using self-distillation.
arXiv Detail & Related papers (2020-07-13T16:56:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.