One-Shot Learning for k-SAT
- URL: http://arxiv.org/abs/2502.07135v1
- Date: Mon, 10 Feb 2025 23:56:08 GMT
- Title: One-Shot Learning for k-SAT
- Authors: Andreas Galanis, Leslie Ann Goldberg, Xusheng Zhang,
- Abstract summary: We show that one-shot learning for $k$-SAT is infeasible well below the satisfiability threshold.
We simplify the analysis of the learning algorithm and obtain significantly stronger bounds on $d$ in terms of $beta$.
- Score: 2.6293381978389787
- License:
- Abstract: Consider a $k$-SAT formula $\Phi$ where every variable appears at most $d$ times, and let $\sigma$ be a satisfying assignment of $\Phi$ sampled proportionally to $e^{\beta m(\sigma)}$ where $m(\sigma)$ is the number of variables set to true and $\beta$ is a real parameter. Given $\Phi$ and $\sigma$, can we learn the value of $\beta$ efficiently? This problem falls into a recent line of works about single-sample ("one-shot") learning of Markov random fields. The $k$-SAT setting we consider here was recently studied by Galanis, Kandiros, and Kalavasis (SODA'24) where they showed that single-sample learning is possible when roughly $d\leq 2^{k/6.45}$ and impossible when $d\geq (k+1) 2^{k-1}$. Crucially, for their impossibility results they used the existence of unsatisfiable instances which, aside from the gap in $d$, left open the question of whether the feasibility threshold for one-shot learning is dictated by the satisfiability threshold of $k$-SAT formulas of bounded degree. Our main contribution is to answer this question negatively. We show that one-shot learning for $k$-SAT is infeasible well below the satisfiability threshold; in fact, we obtain impossibility results for degrees $d$ as low as $k^2$ when $\beta$ is sufficiently large, and bootstrap this to small values of $\beta$ when $d$ scales exponentially with $k$, via a probabilistic construction. On the positive side, we simplify the analysis of the learning algorithm and obtain significantly stronger bounds on $d$ in terms of $\beta$. In particular, for the uniform case $\beta\rightarrow 0$ that has been studied extensively in the sampling literature, our analysis shows that learning is possible under the condition $d\lesssim 2^{k/2}$. This is nearly optimal (up to constant factors) in the sense that it is known that sampling a uniformly-distributed satisfying assignment is NP-hard for $d\gtrsim 2^{k/2}$.
Related papers
- Phase Transitions in the Detection of Correlated Databases [12.010807505655238]
We study the problem of detecting the correlation between two Gaussian databases $mathsfXinmathbbRntimes d$ and $mathsfYntimes d$, each composed of $n$ users with $d$ features.
This problem is relevant in the analysis of social media, computational biology, etc.
arXiv Detail & Related papers (2023-02-07T10:39:44Z) - Reaching Goals is Hard: Settling the Sample Complexity of the Stochastic
Shortest Path [106.37656068276902]
We study the sample complexity of learning an $epsilon$-optimal policy in the Shortest Path (SSP) problem.
We derive complexity bounds when the learner has access to a generative model.
We show that there exists a worst-case SSP instance with $S$ states, $A$ actions, minimum cost $c_min$, and maximum expected cost of the optimal policy over all states $B_star$.
arXiv Detail & Related papers (2022-10-10T18:34:32Z) - Optimal SQ Lower Bounds for Learning Halfspaces with Massart Noise [9.378684220920562]
tightest statistical query (SQ) lower bounds for learnining halfspaces in the presence of Massart noise.
We show that for arbitrary $eta in [0,1/2]$ every SQ algorithm achieving misclassification error better than $eta$ requires queries of superpolynomial accuracy.
arXiv Detail & Related papers (2022-01-24T17:33:19Z) - Learning a Latent Simplex in Input-Sparsity Time [58.30321592603066]
We consider the problem of learning a latent $k$-vertex simplex $KsubsetmathbbRdtimes n$, given access to $AinmathbbRdtimes n$.
We show that the dependence on $k$ in the running time is unnecessary given a natural assumption about the mass of the top $k$ singular values of $A$.
arXiv Detail & Related papers (2021-05-17T16:40:48Z) - Improved Sample Complexity for Incremental Autonomous Exploration in
MDPs [132.88757893161699]
We learn the set of $epsilon$-optimal goal-conditioned policies attaining all states that are incrementally reachable within $L$ steps.
DisCo is the first algorithm that can return an $epsilon/c_min$-optimal policy for any cost-sensitive shortest-path problem.
arXiv Detail & Related papers (2020-12-29T14:06:09Z) - The Sparse Hausdorff Moment Problem, with Application to Topic Models [5.151973524974052]
We give an algorithm for identifying a $k$-mixture using samples of $m=2k$ iid binary random variables.
It suffices to know the moments to additive accuracy $w_mincdotzetaO(k)$.
arXiv Detail & Related papers (2020-07-16T04:23:57Z) - $Q$-learning with Logarithmic Regret [60.24952657636464]
We prove that an optimistic $Q$-learning enjoys a $mathcalOleft(fracSAcdot mathrmpolyleft(Hright)Delta_minlogleft(SATright)right)$ cumulative regret bound, where $S$ is the number of states, $A$ is the number of actions, $H$ is the planning horizon, $T$ is the total number of steps, and $Delta_min$ is the minimum sub-optimality gap.
arXiv Detail & Related papers (2020-06-16T13:01:33Z) - Model-Free Reinforcement Learning: from Clipped Pseudo-Regret to Sample
Complexity [59.34067736545355]
Given an MDP with $S$ states, $A$ actions, the discount factor $gamma in (0,1)$, and an approximation threshold $epsilon > 0$, we provide a model-free algorithm to learn an $epsilon$-optimal policy.
For small enough $epsilon$, we show an improved algorithm with sample complexity.
arXiv Detail & Related papers (2020-06-06T13:34:41Z) - Agnostic Q-learning with Function Approximation in Deterministic
Systems: Tight Bounds on Approximation Error and Sample Complexity [94.37110094442136]
We study the problem of agnostic $Q$-learning with function approximation in deterministic systems.
We show that if $delta = Oleft(rho/sqrtdim_Eright)$, then one can find the optimal policy using $Oleft(dim_Eright)$.
arXiv Detail & Related papers (2020-02-17T18:41:49Z) - Sample Amplification: Increasing Dataset Size even when Learning is Impossible [15.864702679819544]
Given data drawn from an unknown distribution, $D$, to what extent is it possible to amplify'' this dataset and output an even larger set of samples that appear to have been drawn from $D$?
We formalize this question as follows: an $left(n, n + Theta(fracnsqrtk)right)$ amplifier exists, even though learning the distribution to small constant total variation distance requires $Theta(d)$ samples.
arXiv Detail & Related papers (2019-04-26T21:42:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.