Language-TPP: Integrating Temporal Point Processes with Language Models for Event Analysis
- URL: http://arxiv.org/abs/2502.07139v1
- Date: Tue, 11 Feb 2025 00:09:45 GMT
- Title: Language-TPP: Integrating Temporal Point Processes with Language Models for Event Analysis
- Authors: Quyu Kong, Yixuan Zhang, Yang Liu, Panrong Tong, Enqi Liu, Feng Zhou,
- Abstract summary: Temporal Point Processes (TPPs) have been widely used for event sequence modeling, but they often struggle to incorporate rich textual event descriptions effectively.
We introduce Language-TPP, a unified framework that integrates TPPs with Large Language Models (LLMs) for enhanced event sequence modeling.
- Score: 23.27520345839548
- License:
- Abstract: Temporal Point Processes (TPPs) have been widely used for event sequence modeling, but they often struggle to incorporate rich textual event descriptions effectively. Conversely, while Large Language Models (LLMs) have been shown remarkable capabilities in processing textual data, they lack mechanisms for handling temporal dynamics. To bridge this gap, we introduce Language-TPP, a unified framework that integrates TPPs with LLMs for enhanced event sequence modeling. Language-TPP introduces a novel temporal encoding mechanism that converts continuous time intervals into specialized byte-tokens, enabling seamless integration with standard LLM architectures. This approach allows Language-TPP to achieve state-of-the-art performance across multiple TPP tasks, including event time prediction, type prediction, and intensity estimation, on five datasets. Additionally, we demonstrate that incorporating temporal information significantly improves the quality of generated event descriptions.
Related papers
- TimeCAP: Learning to Contextualize, Augment, and Predict Time Series Events with Large Language Model Agents [52.13094810313054]
TimeCAP is a time-series processing framework that creatively employs Large Language Models (LLMs) as contextualizers of time series data.
TimeCAP incorporates two independent LLM agents: one generates a textual summary capturing the context of the time series, while the other uses this enriched summary to make more informed predictions.
Experimental results on real-world datasets demonstrate that TimeCAP outperforms state-of-the-art methods for time series event prediction.
arXiv Detail & Related papers (2025-02-17T04:17:27Z) - EventGPT: Event Stream Understanding with Multimodal Large Language Models [59.65010502000344]
Event cameras record visual information as asynchronous pixel change streams, excelling at scene perception under unsatisfactory lighting or high-dynamic conditions.
Existing multimodal large language models (MLLMs) concentrate on natural RGB images, failing in scenarios where event data fits better.
We introduce EventGPT, the first MLLM for event stream understanding.
arXiv Detail & Related papers (2024-12-01T14:38:40Z) - TPP-LLM: Modeling Temporal Point Processes by Efficiently Fine-Tuning Large Language Models [0.0]
Temporal point processes (TPPs) are widely used to model the timing and occurrence of events in domains such as social networks, transportation systems, and e-commerce.
We introduce TPP-LLM, a novel framework that integrates large language models (LLMs) with TPPs to capture both the semantic and temporal aspects of event sequences.
arXiv Detail & Related papers (2024-10-02T22:17:24Z) - MM-Forecast: A Multimodal Approach to Temporal Event Forecasting with Large Language Models [55.5765505287505]
We study an emerging and intriguing problem of multimodal temporal event forecasting with large language models.
We propose to identify two essential functions that images play in the scenario of temporal event forecasting, i.e., highlighting and complementary.
We develop a novel framework, named MM-Forecast, which incorporates these function descriptions into large language models.
arXiv Detail & Related papers (2024-08-08T11:44:57Z) - Towards Fast Multilingual LLM Inference: Speculative Decoding and Specialized Drafters [21.19251212483406]
Large language models (LLMs) have revolutionized natural language processing and broadened their applicability across diverse commercial applications.
This paper explores a training recipe of an assistant model in speculative decoding, which is leveraged to draft and-then its future tokens are verified by the target LLM.
We show that language-specific draft models, optimized through a targeted pretrain-and-finetune strategy, substantially brings a speedup in inference time compared to the previous methods.
arXiv Detail & Related papers (2024-06-24T16:06:50Z) - Analyzing Temporal Complex Events with Large Language Models? A Benchmark towards Temporal, Long Context Understanding [57.62275091656578]
We refer to the complex events composed of many news articles over an extended period as Temporal Complex Event (TCE)
This paper proposes a novel approach using Large Language Models (LLMs) to systematically extract and analyze the event chain within TCE.
arXiv Detail & Related papers (2024-06-04T16:42:17Z) - Towards Effective Time-Aware Language Representation: Exploring Enhanced Temporal Understanding in Language Models [24.784375155633427]
BiTimeBERT 2.0 is a novel language model pre-trained on a temporal news article collection.
Each objective targets a unique aspect of temporal information.
Results consistently demonstrate that BiTimeBERT 2.0 outperforms models like BERT and other existing pre-trained models.
arXiv Detail & Related papers (2024-06-04T00:30:37Z) - Cumulative Distribution Function based General Temporal Point Processes [49.758080415846884]
CuFun model represents a novel approach to TPPs that revolves around the Cumulative Distribution Function (CDF)
Our approach addresses several critical issues inherent in traditional TPP modeling.
Our contributions encompass the introduction of a pioneering CDF-based TPP model, the development of a methodology for incorporating past event information into future event prediction.
arXiv Detail & Related papers (2024-02-01T07:21:30Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
Time series forecasting holds significant importance in many real-world dynamic systems.
We present Time-LLM, a reprogramming framework to repurpose large language models for time series forecasting.
Time-LLM is a powerful time series learner that outperforms state-of-the-art, specialized forecasting models.
arXiv Detail & Related papers (2023-10-03T01:31:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.