Effects of Random Edge-Dropping on Over-Squashing in Graph Neural Networks
- URL: http://arxiv.org/abs/2502.07364v1
- Date: Tue, 11 Feb 2025 08:36:38 GMT
- Title: Effects of Random Edge-Dropping on Over-Squashing in Graph Neural Networks
- Authors: Jasraj Singh, Keyue Jiang, Brooks Paige, Laura Toni,
- Abstract summary: We present theoretical results that characterize the negative effects of DropEdge on sensitivity between distant nodes.
Our findings are easily extended to its variants, allowing us to build a comprehensive understanding of how they affect over-squashing.
Our conclusions highlight the need to re-evaluate various methods designed for training deep GNNs.
- Score: 8.524684315458243
- License:
- Abstract: Message Passing Neural Networks (MPNNs) are a class of Graph Neural Networks (GNNs) that leverage the graph topology to propagate messages across increasingly larger neighborhoods. The message-passing scheme leads to two distinct challenges: over-smoothing and over-squashing. While several algorithms, e.g. DropEdge and its variants -- DropNode, DropAgg and DropGNN -- have successfully addressed the over-smoothing problem, their impact on over-squashing remains largely unexplored. This represents a critical gap in the literature as failure to mitigate over-squashing would make these methods unsuitable for long-range tasks. In this work, we take the first step towards closing this gap by studying the aforementioned algorithms in the context of over-squashing. We present novel theoretical results that characterize the negative effects of DropEdge on sensitivity between distant nodes, suggesting its unsuitability for long-range tasks. Our findings are easily extended to its variants, allowing us to build a comprehensive understanding of how they affect over-squashing. We evaluate these methods using real-world datasets, demonstrating their detrimental effects. Specifically, we show that while DropEdge-variants improve test-time performance in short range tasks, they deteriorate performance in long-range ones. Our theory explains these results as follows: random edge-dropping lowers the effective receptive field of GNNs, which although beneficial for short-range tasks, misaligns the models on long-range ones. This forces the models to overfit to short-range artefacts in the training set, resulting in poor generalization. Our conclusions highlight the need to re-evaluate various methods designed for training deep GNNs, with a renewed focus on modelling long-range interactions.
Related papers
- DeltaGNN: Graph Neural Network with Information Flow Control [5.563171090433323]
Graph Neural Networks (GNNs) are designed to process graph-structured data through neighborhood aggregations in the message passing process.
Message-passing enables GNNs to understand short-range spatial interactions, but also causes them to suffer from over-smoothing and over-squashing.
We propose a mechanism called emph information flow control to address over-smoothing and over-squashing with linear computational overhead.
We benchmark our model across 10 real-world datasets, including graphs with varying sizes, topologies, densities, and homophilic ratios, showing superior performance
arXiv Detail & Related papers (2025-01-10T14:34:20Z) - ADEdgeDrop: Adversarial Edge Dropping for Robust Graph Neural Networks [53.41164429486268]
Graph Neural Networks (GNNs) have exhibited the powerful ability to gather graph-structured information from neighborhood nodes.
The performance of GNNs is limited by poor generalization and fragile robustness caused by noisy and redundant graph data.
We propose a novel adversarial edge-dropping method (ADEdgeDrop) that leverages an adversarial edge predictor guiding the removal of edges.
arXiv Detail & Related papers (2024-03-14T08:31:39Z) - Robust Graph Neural Network based on Graph Denoising [10.564653734218755]
Graph Neural Networks (GNNs) have emerged as a notorious alternative to address learning problems dealing with non-Euclidean datasets.
This work proposes a robust implementation of GNNs that explicitly accounts for the presence of perturbations in the observed topology.
arXiv Detail & Related papers (2023-12-11T17:43:57Z) - Reducing Over-smoothing in Graph Neural Networks Using Relational
Embeddings [0.15619750966454563]
We propose a new simple, and efficient method to alleviate the effect of the over-smoothing problem in GNNs.
Our method can be used in combination with other methods to give the best performance.
arXiv Detail & Related papers (2023-01-07T19:26:04Z) - On the Trade-off between Over-smoothing and Over-squashing in Deep Graph
Neural Networks [8.105516788827451]
Over-smoothing and over-squashing are key challenges when stacking graph convolutional layers.
Our work reveals that over-smoothing and over-squashing are intrinsically related to the spectral gap of the graph Laplacian.
To achieve a suitable compromise, we propose adding and removing edges as a viable approach.
arXiv Detail & Related papers (2022-12-05T15:56:08Z) - EIGNN: Efficient Infinite-Depth Graph Neural Networks [51.97361378423152]
Graph neural networks (GNNs) are widely used for modelling graph-structured data in numerous applications.
Motivated by this limitation, we propose a GNN model with infinite depth, which we call Efficient Infinite-Depth Graph Neural Networks (EIGNN)
We show that EIGNN has a better ability to capture long-range dependencies than recent baselines, and consistently achieves state-of-the-art performance.
arXiv Detail & Related papers (2022-02-22T08:16:58Z) - Very Deep Graph Neural Networks Via Noise Regularisation [57.450532911995516]
Graph Neural Networks (GNNs) perform learned message passing over an input graph.
We train a deep GNN with up to 100 message passing steps and achieve several state-of-the-art results.
arXiv Detail & Related papers (2021-06-15T08:50:10Z) - A Biased Graph Neural Network Sampler with Near-Optimal Regret [57.70126763759996]
Graph neural networks (GNN) have emerged as a vehicle for applying deep network architectures to graph and relational data.
In this paper, we build upon existing work and treat GNN neighbor sampling as a multi-armed bandit problem.
We introduce a newly-designed reward function that introduces some degree of bias designed to reduce variance and avoid unstable, possibly-unbounded payouts.
arXiv Detail & Related papers (2021-03-01T15:55:58Z) - Understanding and Resolving Performance Degradation in Graph
Convolutional Networks [105.14867349802898]
Graph Convolutional Network (GCN) stacks several layers and in each layer performs a PROPagation operation (PROP) and a TRANsformation operation (TRAN) for learning node representations over graph-structured data.
GCNs tend to suffer performance drop when the model gets deep.
We study performance degradation of GCNs by experimentally examining how stacking only TRANs or PROPs works.
arXiv Detail & Related papers (2020-06-12T12:12:12Z) - On the Bottleneck of Graph Neural Networks and its Practical
Implications [22.704284264177108]
We show that graph neural networks (GNNs) are susceptible to a bottleneck when aggregating messages across a long path.
This bottleneck causes the over-squashing of exponentially growing information into fixed-size vectors.
GNNs fail to propagate messages originating from distant nodes and perform poorly when the prediction task depends on long-range interaction.
arXiv Detail & Related papers (2020-06-09T12:04:50Z) - Towards an Efficient and General Framework of Robust Training for Graph
Neural Networks [96.93500886136532]
Graph Neural Networks (GNNs) have made significant advances on several fundamental inference tasks.
Despite GNNs' impressive performance, it has been observed that carefully crafted perturbations on graph structures lead them to make wrong predictions.
We propose a general framework which leverages the greedy search algorithms and zeroth-order methods to obtain robust GNNs.
arXiv Detail & Related papers (2020-02-25T15:17:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.