A Near-optimal, Scalable and Corruption-tolerant Framework for Stochastic Bandits: From Single-Agent to Multi-Agent and Beyond
- URL: http://arxiv.org/abs/2502.07514v1
- Date: Tue, 11 Feb 2025 12:33:33 GMT
- Title: A Near-optimal, Scalable and Corruption-tolerant Framework for Stochastic Bandits: From Single-Agent to Multi-Agent and Beyond
- Authors: Zicheng Hu, Cheng Chen,
- Abstract summary: We propose a novel framework called BARBAT, which eliminates the factor of $K$ and achieves an optimal regret bound to a logarithmic factor.
We also demonstrate how BARBAT can be extended to various settings, including graph bandits, semi-bandits, batched bandits and multi-agent bandits.
- Score: 2.5217803205496283
- License:
- Abstract: We investigate various stochastic bandit problems in the presence of adversarial corruption. A seminal contribution to this area is the BARBAR~\citep{gupta2019better} algorithm, which is both simple and efficient, tolerating significant levels of corruption with nearly no degradation in performance. However, its regret upper bound exhibits a complexity of $O(KC)$, while the lower bound is $\Omega(C)$. In this paper, we enhance the BARBAR algorithm by proposing a novel framework called BARBAT, which eliminates the factor of $K$ and achieves an optimal regret bound up to a logarithmic factor. We also demonstrate how BARBAT can be extended to various settings, including graph bandits, combinatorial semi-bandits, batched bandits and multi-agent bandits. In comparison to the Follow-The-Regularized-Leader (FTRL) family of methods, which provide a best-of-both-worlds guarantee, our approach is more efficient and parallelizable. Notably, FTRL-based methods face challenges in scaling to batched and multi-agent settings.
Related papers
- Stability-penalty-adaptive follow-the-regularized-leader: Sparsity,
game-dependency, and best-of-both-worlds [46.30750729936261]
Follow-the-regularized-leader (FTRL) has recently emerged as one of the most promising approaches for obtaining various types of adaptivity in bandit problems.
We establish several algorithms with three types of adaptivity: sparsity, game-dependency, and best-of-both-worlds (BOBW)
arXiv Detail & Related papers (2023-05-26T23:20:48Z) - Contextual Combinatorial Bandits with Probabilistically Triggered Arms [55.9237004478033]
We study contextual bandits with probabilistically triggered arms (C$2$MAB-T) under a variety of smoothness conditions.
Under the triggering modulated (TPM) condition, we devise the C$2$-UC-T algorithm and derive a regret bound $tildeO(dsqrtT)$.
arXiv Detail & Related papers (2023-03-30T02:51:00Z) - Corruption-Robust Algorithms with Uncertainty Weighting for Nonlinear
Contextual Bandits and Markov Decision Processes [59.61248760134937]
We propose an efficient algorithm to achieve a regret of $tildeO(sqrtT+zeta)$.
The proposed algorithm relies on the recently developed uncertainty-weighted least-squares regression from linear contextual bandit.
We generalize our algorithm to the episodic MDP setting and first achieve an additive dependence on the corruption level $zeta$.
arXiv Detail & Related papers (2022-12-12T15:04:56Z) - Dueling Bandits: From Two-dueling to Multi-dueling [40.4378338001229]
We study a general multi-dueling bandit problem, where an agent compares multiple options simultaneously and aims to minimize the regret due to selecting suboptimal arms.
This setting generalizes the traditional two-dueling bandit problem and finds many real-world applications involving subjective feedback on multiple options.
arXiv Detail & Related papers (2022-11-16T22:00:54Z) - Batch-Size Independent Regret Bounds for Combinatorial Semi-Bandits with Probabilistically Triggered Arms or Independent Arms [59.8188496313214]
We study the semi-bandits (CMAB) and focus on reducing the dependency of the batch-size $K$ in the regret bound.
First, for the setting of CMAB with probabilistically triggered arms (CMAB-T), we propose a BCUCB-T algorithm with variance-aware confidence intervals.
Second, for the setting of non-triggering CMAB with independent arms, we propose a SESCB algorithm which leverages on the non-triggering version of the TPVM condition.
arXiv Detail & Related papers (2022-08-31T13:09:39Z) - Bandits Corrupted by Nature: Lower Bounds on Regret and Robust
Optimistic Algorithm [14.214707836697823]
We study the corrupted bandit problem, i.e. a multi-armed bandit problem with $k$ unknown reward distributions.
We propose a novel UCB-type algorithm for corrupted bandits, namely HubUCB, that builds on Huber's estimator for robust mean estimation.
We experimentally illustrate the efficiency of HubUCB and SeqHubUCB in solving corrupted bandits for different reward distributions and different levels of corruptions.
arXiv Detail & Related papers (2022-03-07T07:44:05Z) - A Robust Phased Elimination Algorithm for Corruption-Tolerant Gaussian
Process Bandits [118.22458816174144]
We propose a novel robust elimination-type algorithm that runs in epochs, combines exploration with infrequent switching to select a small subset of actions, and plays each action for multiple time instants.
Our algorithm, GP Robust Phased Elimination (RGP-PE), successfully balances robustness to corruptions with exploration and exploitation.
We perform the first empirical study of robustness in the corrupted GP bandit setting, and show that our algorithm is robust against a variety of adversarial attacks.
arXiv Detail & Related papers (2022-02-03T21:19:36Z) - Upper Confidence Bounds for Combining Stochastic Bandits [52.10197476419621]
We provide a simple method to combine bandit algorithms.
Our approach is based on a "meta-UCB" procedure that treats each of $N$ individual bandit algorithms as arms in a higher-level $N$-armed bandit problem.
arXiv Detail & Related papers (2020-12-24T05:36:29Z) - Stochastic Bandits with Linear Constraints [69.757694218456]
We study a constrained contextual linear bandit setting, where the goal of the agent is to produce a sequence of policies.
We propose an upper-confidence bound algorithm for this problem, called optimistic pessimistic linear bandit (OPLB)
arXiv Detail & Related papers (2020-06-17T22:32:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.